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Abstract: There are many criteria that have been proposed to determine the capability of a measurement 

system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the 

Signal to Noise Ratio and the probabilities of misclassification. 

For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point 

estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence 

intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the 

construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi. 

In this work we focus on the construction of the confidence intervals by the generalized approach in the context 

of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze 

the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size 

of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some 

practical implementation guidelinesin the use of the GCI approach. 

We finally present a real case study in which this technique was applied to evaluate the capability of a 

destructive measurement system. 

Keywords:Gauge R&R studies, Generalized confidence intervals, Destructive measurements. 

 
I. INTRODUCTION 

Repeatability and reproducibility (R&R) studies are widely used in current activities of quality 

improvement, since they allow deciding whether the system is able to produce measurements that reflect the true 

behavior of the process, by quantifying its variability and comparing it with the total process variation. Many 

criteria have been proposed to make that comparison, all of them involving certain indicators which must be 

estimated from the data. Some of these indicators are the Precision to Tolerance Ratio (PTR), the %R&R 

indicator, the Signal to Noise Ratio (SNR) and the probabilities of misclassification. In general, estimations of 

these indicators are based on estimations of the variance components of the model proposed by design. 

The importance of studying the capability of measurement systems relies on the fact that any quality 

improvement activity involves analyzing information about the process, and that information comes, in general, 

from measuring the variables of interest. This activity introduces an additional source of variation to data that 

needs to be considered. Inadequate measurement system could add enough variability so that the measurements 

do not represent the reality of the process. It was proved that the presence of measurement errors in data affects 

the performance of several of the commonly used techniques in the field of quality improvement, such as 

control charts, univariate process capability analysis, multivariate process capability analysis [1], [2], [3], [4], 

[5], [6]. So, measurement system analysis should be considered as a fundamental step in any quality 

improvement strategy. The possibility of having confidence intervals for the indicators from which it is decided 

whether the measurement system is adequate or not, provides greater support to make such decision.  

Although point estimation is not a problem for most of these indicators, there are not exact confidence 

intervals, since the combinations of random variables from which point estimators are constructed do not have a 

known probability distribution. In such situations, two approaches have been proposed to construct approximate 

confidence intervals: one is the modified large samples method (𝑀𝐿𝑆), first proposed by Graybill and Wang [7], 

and the second approach is based on the construction of generalized confidence intervals (𝐺𝐶𝐼), which were 

developed by Weerahandi[8]. 

In the decade of 1930the possibility of constructing confidence intervals for linear combinations of 

variances began to be discussed. Since then several authors proposed alternatives for their construction. In 1936 

Smithdefined an estimate for linear functions of variances and proposed its approximate distribution from the 

Chi-squared distribution with a specific determination of degrees of freedom [9]. In the 1940s, Satterthwaite 

studied this approach giving rise to what is known as the Satterthwaite procedure [10], [11]. In 1978, Burdick 

and Sielken proposed a new method that did not thrive as it led to intervals with extremely large widths 

compared to those obtained with the Satterthwaite procedure [12]. In 1980, a new method was published by the 



On Confidence Intervals Construction For Measurement System Capability Indicators. 

www.irjes.com                                                             9 | Page 

authors Graybill and Wang [7], which is currently one of the approaches used to construct approximate 

confidence intervals. The method was called Modified Large Sample. 

Another approach used today arose from the concept of generalized inference introduced by Tsui and 

Weerahandi to construct hypothesis tests when no exact methods exist [13]. Some years later 

Weerahandiextended this concept to construct what is known as generalized confidence interval [8]. 

Empirical comparisons suggest that both approaches produce similar results [14]. The generalized 

method has the advantage of offering a general procedure that can be used under complex designs that include 

crossed or nested factors, and both fixed and random effects. The MLS method is not so flexible in that sense, 

but it does offer closed expressions that are relatively easy to implement in any computational software. 

In this work we deepen the study of certain aspects related to the construction of the confidence 

intervals by the generalized approach.Onethoseaspectsis related to the fact that this method does not produce 

closed-form intervals. Instead, they have to be approximated by simulation procedures and hence different 

confidence intervals could be obtained when applying this method over the same data set.This inconvenient can 

be solved by using an adequate number of simulations in the procedure. However it does not exist in the 

literature rules establishing how many simulations are enough to ensure that the variability in the confidence 

limits is negligible. Krishnamoorthy and Mathew use, without justification, 30,000 simulations in the 

determination of tolerance limits [15]. Later, Romero, Zúnica and Paguraproposed that the number of 

simulations is a key factor to explain the uncertainty in repeated simulations [16]. In the context of the 

estimation of variance components in 𝑅&𝑅 studies, Burdick et al. use 100,000 simulations in the numerical 

examples of the methods, without justification either [14].We therefore conducted a comparative study designed 

so as to be able to identify the effect that the number of simulations produces on the confidence limits 

variability, when the method is applied repeatedly over the same data. 

The other aspect analyzed is related to the effect that the size of the experiment can cause on the 

precision of the estimates of the capability indices of the measurement systems. In most practical situations, 

experiments that are designed to analyze the performance of measurement systems involve a small number of 

trials, which can cause estimates to lose precision. In this sense, we present the results obtained on a data set 

varying the size of the experiment. 

Finally, the approach of GCIs is applied to a real data set coming from a metallurgical industry. The 

measurement process to be analyzed in this case is classified as destructive, so it requires the use of nested 

models which are not very common in the context of gauge R&R studies.  

 

II. METHODOLOGY 
2.1Gauge R&R studies 

To performan𝑅&𝑅 study, it is necessary to assume that the obtained measurements 𝑦𝑖  can be described 

by a model of the form 𝑦𝑖 = 𝑥𝑖 + 𝜀𝑖 . Let 𝑋~𝑁(𝜇𝑋 ;  𝜎𝑃)and𝜀~𝑁 0; 𝜎𝑀 beindependent random variables that 

represent the true value of the measured characteristic and the component of error introduced by the 

measurement process, respectively. Then the total variability of the observed measurements is:  

 

𝜎𝑇
2 = 𝜎𝑃

2 + 𝜎𝑀
2                                                                                    (1) 

 

Furthermore, the variability related to the measurement process 𝜎𝑀
2  can be subdivided into two 

components: the repeatability -variability due to the measuring device-, and the reproducibility –variability 

arising from different operators-. Thus: 

𝜎𝑀
2 = 𝜎𝑅𝑒𝑝𝑒𝑡

2 + 𝜎𝑅𝑒𝑝𝑟𝑜𝑑
2                                                                           (2)  

 
Once each of these components is identified, there are several criteria to decide whether the 

measurement system is capable or not, where capable means that the measurement system has the ability to 

generate precise information. One of the most commonly used is the Precision to Tolerance Ratio, 𝑃𝑇𝑅, defined 

as:  

𝑃𝑇𝑅 =
𝑘 𝜎𝑀

(𝑈𝑆𝐿 − 𝐿𝑆𝐿)
                                                                             (3) 

 

where𝑈𝑆𝐿 y 𝐿𝑆𝐿 are the specification limits of the process, and 𝑘 is a constant that correspond to the number of 

standard deviations between the natural tolerance limits that contain the middle 1 − 𝛼/2 100% of a normal 

process. Common used values are 𝑘 = 6, corresponding to 𝛼 = 0.0027, and 𝑘 = 5.15 corresponding to 

𝛼 = 0.01. 

A rule of thumb to determine the capability of the measurement system, proposed by the Automotive 

Industry Action Group, is as follows: The system is considered capable if 𝑃𝑇𝑅 is less than 0.10 and not capable 

if it is greater than 0.30. If the percentage is between 0.10 and 0.30, the rule does not provide a decision and 



On Confidence Intervals Construction For Measurement System Capability Indicators. 

www.irjes.com                                                             10 | Page 

other factors should be considered, such as the global behaviorof the process or the cost for misclassification of 

units [17]. 

Montgomery and Runger, among other authors, pointed out that the 𝑃𝑇𝑅 indicator does not necessarily 

bring a quantification of the behavior of the measurement process, since a highly capable process with respect to 

the specifications can tolerate measurement systems that produce higher variability than those that are less 

capable [18], [19]. An alternative indicator -%𝑅&𝑅- has been proposed, which is built comparing the variability 

of the measurement system with the total variability of the process: 

%𝑅&𝑅 = 100
𝜎𝑀

𝜎𝑇

                                                                                 (4) 

 

The decision about the capability of the measurement system from this indicator is made following the 

criteria suggested for 𝑃𝑇𝑅 (in percent terms).   

In the context of these studies, the variability associated to the measurement system comprises the 

variability due to the repeatability and due to the reproducibility, which makes reasonable to evaluate which of 

the two factors 𝜎𝑅𝑒𝑝𝑒𝑎𝑡
2 𝜎𝑀

2  and 𝜎𝑅𝑒𝑝𝑟𝑜𝑑
2 𝜎𝑀

2 has higher contribution. 

Other widelyusedindicators are the Signal to Noise Ratio -𝑆𝑁𝑅-, that reflects capability of 

discrimination of the measurement system, and those indicatorsbased on probabilities of misclassification, 

whose application is meaningful only on measurements systems designed to discriminate between good and bad 

parts or units. 

The𝑆𝑁𝑅 is defined as  2𝜎𝑃
2 𝜎𝑀

2 and its value indicates the number of distinct categories the 

measurement system can reliably distinguish. It is recommended to obtain values of 𝑆𝑁𝑅 of at least five. 

Regarding misclassification, it can arise in two different ways: false failure, when a good unit is 

classified as a bad one or failure; or missed fault, when a failure is misclassified as a good unit. In any case, 

desirable values for the false failure rate -𝛿- and for the missed fault rate -𝛽-are established and compared with 

the sample results to decide about the capability of the system.  

Regardless the selected criterion or indicatorto evaluate the measurement system capability, the 

parameters involved in its expression must be estimated from sample data. Such data is usually obtained from 

designed experiments and analyzed by an analysis of variance. This technique allows to evaluate the 

significance of the selected factors and to obtain point estimates of the parameters needed to construct the 

measurement system capability indicator chosen.  

In the particular case of the balanced two-factor crossed random model with interaction, where the two 

factors are referred to as “parts” (factor “𝑃”) and “operators” (factor “𝑂”), measurements can be represented by 

the model:  

𝑌𝑖𝑗𝑘 = 𝜇𝑌 + 𝑃𝑖 + 𝑂𝑗 +  𝑃𝑂 𝑖𝑗 + 𝜀𝑖𝑗𝑘 ;   𝑖 = 1, … , 𝑝;   𝑗 = 1, … , 𝑜;   𝑘 = 1, … , 𝑟                           (5) 

 

The random effects of the model are assumed to be jointly independent and normally distributed with 

zero meansand the following variances:  

𝑉 𝑃𝑖 = 𝜎𝑃
2;     𝑉 𝑂𝑗  = 𝜎𝑂

2;     𝑉  𝑃𝑂 𝑖𝑗  = 𝜎𝑃𝑂
2 ;     𝑉 𝜀𝑖𝑗𝑘  = 𝜎𝐸

2                                  (6) 

 

The variance components of interest in the context of 𝑅&𝑅 studies (those involved in (2)), are obtained 

as a combination of the variance components of the factors in the model, keeping in mind that the variation of 

the measurement system is attributed to all sources of variation except parts. Additionally, residual variance 

represents the repeatability of the system; and variance due to operators and interaction between operators and 

parts represent its reproducibility:   

𝜎𝑅𝑒𝑝𝑒𝑡
2 = 𝜎𝐸

2;     𝜎𝑅𝑒𝑝𝑟𝑜𝑑
2 = 𝜎𝑃𝑂

2 + 𝜎𝑂
2;      𝜎𝑀

2 = 𝜎𝑅𝑒𝑝𝑒𝑡
2 + 𝜎𝑅𝑒𝑝𝑟𝑜𝑑

2  7  
 

Expressions for point estimates of variance components in (6) are easily obtained from the expressions 

of the expected mean squares(𝐸(𝑆𝑖
2)) of the model, which in this case are:  

𝐸 𝑆𝑂
2 = 𝜃𝑂 = 𝜎𝐸

2 + 𝑟𝜎𝑃𝑂
2 + 𝑝𝑟𝜎𝑂

2 

𝐸 𝑆𝑃
2 = 𝜃𝑃 = 𝜎𝐸

2 + 𝑟𝜎𝑃𝑂
2 + 𝑜𝑟𝜎𝑃

2                                                             (8) 

𝐸 𝑆𝑃𝑂
2  = 𝜃𝑃𝑂 = 𝜎𝐸

2 + 𝑟𝜎𝑃𝑂
2  

𝐸 𝑆𝐸
2 = 𝜃𝐸 = 𝜎𝐸

2 

Then:  

𝜎 𝐸
2 = 𝑀𝑆𝐸 ;     𝜎 𝑃𝑂

2 =
𝑀𝑆𝑃𝑂 − 𝑀𝑆𝐸

𝑟
;     𝜎 𝑂

2 =
𝑀𝑆𝑂 − 𝑀𝑆𝑃𝑂

𝑝𝑟
;     𝜎 𝑃

2 =
𝑀𝑆𝑃 − 𝑀𝑆𝑃𝑂

𝑜𝑟
                         (9) 

where𝑀𝑆𝑖 is the sample value of the mean squares 𝑆𝑖
2.  
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The variance components in 𝑅&𝑅 studies can be rewritten as combinations of the expected mean 

squares in (8), and their point estimates can be obtained in terms of the point estimates in (9). For example, the 

variability of the measurement system can be estimated as: 

𝜎 𝑀
2 = 𝜎 𝑅𝑒𝑝𝑒𝑡

2 + 𝜎 𝑅𝑒𝑝𝑟𝑜𝑑
2 = 𝜎 𝐸

2 + 𝜎 𝑃𝑂
2 + 𝜎 𝑂

2 =
𝑝 𝑟 − 1 𝑀𝑆𝐸 +  𝑝 − 1 𝑀𝑆𝑂𝑃 + 𝑀𝑆𝑂

𝑝𝑟
                        (10) 

 

The purpose of the point estimations is to make a decision about the measurement system capability. 

Therefore, it would be of great benefit to have a confidence interval to quantify the uncertainty associated with 

the estimation process. However, for most of the mentioned indicators, there are not exact confidence intervals 

due to the fact that the exact distributions of the point estimators are unknown. 

 

2.2Generalized confidence intervals 

The traditional approach for constructing confidence intervals is based on a pivotal quantity, i.e., a 

function of the unknown parameter of interest whose distribution does not depend on that parameter, from 

which the desired interval is obtained. Using a similar approach, 𝐺𝐶𝐼 construction is based on what it is called a 

generalized pivotal quantity (𝐺𝑃𝑄), defined by Weerahandias follows [8]. 

Let 𝑅 = 𝑟(𝑿; 𝒙, 𝝊) be a function of 𝑿, 𝒙 and 𝜐 (but not necessarily a function of all), where 𝝊 = (𝜃, 𝜹) 

is a vector of unknown parameters, 𝜃 being the parameter of interest and 𝜹 a vector of nuisance parameters. 

Then, 𝑅 is said to be a generalized pivotal quantity if it has the following two properties: 

 

Property A:R has a probability distribution free of unknown parameters 

Property B: The observed pivotal, defined as 𝑟𝑜𝑏𝑠 = 𝑟(𝑥; 𝑥, 𝜐) does not depend on the nuisance parameters in δ. 

 

Once theGPQ is defined, let𝐶1−𝛼  a region in the sample space of Rsatisfying𝑃 𝑅 ∈ 𝐶1−𝛼 = 1 − 𝛼. 

Then a 100(1 − α)% generalized confidence interval for the parameter𝜃 is the subset of the parametric space 

𝛩defined as: 

𝛩𝐶 𝑟 =  𝜃 ∈ 𝛩 | 𝑟𝑜𝑏𝑠 ∈ 𝐶1−𝛼                                                                   (11) 
 

Applying this method, the confidence intervals depend on the distribution of the 𝑅 but there are only 

few instances in which this method leadsto closed-form intervals, being the general rule to approximate the 

limits of the region by simulation procedures [20], [15], [14]. 

It is important to realize that deducing an appropriate 𝐺𝑃𝑄for each particular problem is not a trivial 

task. Although several authors have developed expressions for 𝐺𝑃𝑄s in many particular situations, it does not 

exist yet a general method for constructing these functions.  

Burdick et al. summarizes the 𝐺𝑃𝑄s already developed for estimating most of the capability indicators 

used in measurement capability studies, in several different scenarios [14].  

Consider the case of the indicator%𝑅&𝑅, under the model specified in (4). It is possible to obtain a 

𝐺𝑃𝑄 from results by Hamada y Weerahandi [21], who proposed 𝐺𝑃𝑄 for both parameters𝜎𝑀
2  and𝜎𝑃

2, and then 

applying the proposition due to Iyer and Patterson [22], who proposed a general procedure to construct 𝐺𝑃𝑄s 

for functions that dependon various parameters. 

The identity in (1) makes it possible to re-write the %𝑅&𝑅 indicator as a function of 𝜎𝑀
2 and𝜎𝑃

2. Then, 

the 𝐺𝑃𝑄is obtained by applying that function to the 𝐺𝑃𝑄s ofeach individual parameters involved in the 

expression.  

Thus, being: 

%𝑅&𝑅 = 100
𝜎𝑀

𝜎𝑇

= 100
𝜎𝑀

 𝜎𝑀
2 + 𝜎𝑃

2
 

𝐺𝑃𝑄𝜎𝑃
2 = max  0,

 𝑝 − 1 𝐶𝑀𝑃

𝑜𝑟 𝑊1

−
 𝑝 − 1 (𝑜 − 1)𝐶𝑀𝑃𝑂

𝑜𝑟 𝑊3

  

𝐺𝑃𝑄𝜎𝑀
2 =

 𝑜 − 1 𝐶𝑀𝑂

𝑝𝑟 𝑊2

+  
 𝑝 − 1 2(𝑜 − 1)𝐶𝑀𝑃𝑂

𝑝𝑟 𝑊3

+
𝑝𝑜 𝑟 − 1 2𝐶𝑀𝐸

𝑟 𝑊4

 

 

We have that: 

𝐺𝑃𝑄%𝑅&𝑅 = 100 
𝐺𝑃𝑄𝜎𝑀

2

𝐺𝑃𝑄𝜎𝑃
2 + 𝐺𝑃𝑄𝜎𝑀

2
 12  

where 𝑊1, 𝑊2, 𝑊3and𝑊4 are jointly independent chi-squared random variables with  𝑝 − 1 , (𝑜 − 1),  𝑝 −
1𝑜−1and𝑝𝑜(𝑟−1 degrees of freedom, respectively.  
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Since we already have the expression of the 𝐺𝑃𝑄 forthe%𝑅&𝑅 indicator, its distribution needs to be 

estimated by means of a simulation procedure. Then, lower and upper confidence bounds are defined as those 

values corresponding to the 100 𝛼 2  thand100 1 − 𝛼 2  th percentiles in the simulated distribution of the 

𝐺𝑃𝑄, respectively. 

 

III. Results 
3.1The Effect Of The Number Of Simulations On The Variability Of Confidence Limits 

As it was mentioned, obtaining confidence intervals using the generalized approach involves 

simulation procedures. One of the disadvantages of this is that, for the same data set, the replication of the 

simulation procedure could result in different confidence intervals each time; which is undesirable in practice. In 

order to evaluate how the number of simulations affectsthe variability of the resulting intervals, we performed 

three simulation studies varying the number of simulations (N) among 10,000;  50,000 and 100,000.Each study 

was repeated 5,000 times, so we finally have 5,000 GCIs computed from each value of N. 

The study was made on the data set based on the experiment described by Houf and Berman [23]. The 

response variable is the thermal performance of a module measured in Celsius per watt. Each response has been 

multiplied by 100 for convenience of scale. The data represent measurements of ten power modules recorded by 

three operators. Each part was measured three times by each operator, thus generating a total of 90 randomized 

trials.ANOVA technique was used to analyze this data set, assuming a two-factor crossed random model with 

interaction. Estimations of the variance components were: 

𝜎 𝐸
2 = 0.5111;   𝜎 𝑃𝑂

2 = 0.7280;   𝜎 𝑂
2 = 0.5646;    𝜎 𝑃

2 = 48.2926 
thus:  

𝜎 𝑅𝑒𝑝𝑒𝑡
2 = 0.5111;   𝜎 𝑅𝑒𝑝𝑟𝑜𝑑

2 = 1.2926;    𝜎 𝑀
2 = 1.8037;    %𝑅& 𝑅 = 18.9749% 

 

Generalized confidence intervals for %𝑅&𝑅were computed using MonteCarlo simulation. The 

simulation procedure was defined to simulate 𝑁 values of the 𝐺𝑃𝑄 in (12), by first generating random values of 

each of the four chi-squared variables𝑊1, 𝑊2, 𝑊3and𝑊4 previously mentioned, and later combining them with 

the observed mean squares in the ANOVA.  

 

Table 1 shows descriptive statistics for the limits of the 95% GCIs across the 5,000 determinations in 

each simulation study. 

 

Table 1.Simulation results: Descriptive measures for GCIs limits. 
  Number of simulations 

  10,000 50,000 100,000 200,000 

Lower bound Mean 10.7923 10.7917 10.7906 10.7915 
Std. Dev 0.1076 0.0466 0.0336 0.0233 

Minimum 10.4460 10.6436 10.6990 10.7217 
Maximum 11.1363 10.9224 10.9047 10.8663 

Upper bound Mean 60.2151 60.1766 60.1698 60.1670 
Std. Dev. 1.1338 0.5188 0.3760 0.2559 

Minimum 56.7991 58.5664 59.0575 59.3237 

Maximum 64.6730 61.7135 61.4816 60.9538 

 
As it was expected, the variability on the confidence limits decreases as the number of simulations 

increases. However, it should be noted that the variability on upper limits is fairly greater than the variabilityof 

lower limits, regardless of the number of simulations considered. The shape of the 𝐺𝑃𝑄 distributions could be a 

reason for this behavior. In fact, empirical distributions of the 𝐺𝑃𝑄 were found very asymmetric, with a huge 

positive skew. Table 2 shows descriptive statistics of skewness of the 𝐺𝑃𝑄’s empirical distributions and Fig.1 

shows one of the 5,000 𝐺𝑃𝑄’s empirical distributions obtained in each study. Furthermore, Fig. 2 shows de 

empirical distributions of the generalized confidence limits by number of simulations, from which is evident the 

reduction in variability accounted by increasing the value of N. 

 

Table 2.Simulations results: Descriptive statistics for skewnesscoefficientof GPQ’s empirical distributions. 

  Number of simulations 

  10,000 50,000 100,000 500,000 

Skewness 
coefficient 

Mean 2.4355 2.4382 2,4389 2.4389 
Minimum 2.2750 2.3615 2.3893 2.3999 
Maximum 2.6249 2.5282 2.4892 2.4760 

Figure 1.Empirical distributions of GPQ. 
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Figure 2.Empirical distributions of generalized confidence limits, by number of simulations. 

 
 

Regarding the issue of interest, the effect of the number of simulations on confidence limits variability, 

it is recommended to use at least 100,000 simulations when computing a GCI. Clearly, if a larger number of 

simulations is chosen, higher precision is achieved, especially for the upper confidence limit which is the most 

variable. However, the objective of the study was to identify a value of N that achieves a compromise between 

precision of the results and computational cost required. We consider that acceptable results are obtained with 

100,000 simulations, in the sense that discrepancies between minimum and maximum possible value for each 

confidence limit are very small (0.21% and 2.42% in lower and upper limits, respectively).  

These results correspond to the study of the behavior of GPQs on a particular case and they should be 

confirmed with more general studies. However, given the nature of the property evaluated, it is reasonable to 

assume that similar results can be expected in different situations. 

 

3.2Effect of the size of the experiment in the precision of estimates 

The data set analyzed in previous section corresponds to an experiment involving three operators who 

measured three times each of ten parts, thus generating a total of 90 randomized trials. 

The point estimate of the measurement system capability indicator was: 

%𝑅& 𝑅 = 18.9749% 
 

and its generalized 95% confidence interval, computed from 100,000 simulations as it was recommended, is: 

𝐼𝐶95% %𝑅&𝑅 =  10.7673; 60.1473  

 

The point estimate of the indicator leads to a situation of indecision, in which the analyst should decide 

about the capability of the process taking into account other factors of the process. The confidence interval can 

be helpful in this decision, offering in this particular case evidence against the adequacy of the measurement 

system, since it indicates that it can be expected that the index be as large as 60%. 

Nevertheless, it can be noticed that the interval width is very large. One possible reason for this is the 

size of the experiment, i.e., the number of levels of each factor in the design of the experiment, since those 

numbers of levels determine the degrees of freedom of the chi-squared variables involved in the generalized 

interval computations.  
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In order to evaluate this aspect, we modified the experiment to increase the number of operators used 

by Houf and Berman. The modified data set has now six operators who measured three times each of the ten 

modules, leading to 180 randomized trials. 

Over this data set, the point estimate of the measurement system capability indicator is similar the 

estimate obtained under the original data:  

%𝑅& 𝑅 = 17.8670% 
 

but its generalized 95% confidence interval results: 

𝐼𝐶95% %𝑅&𝑅 =  10.0060;   32.0643  

 

which width is reduced by 55%. This result is a bit more informative about the performance of the measurement 

system, since it indicates that its capability index is not so great to conclude that the measurement system is not 

adequate.   

In the same way, modifying the data set so that the experiment has six operators, ten modules and six 

replications instead of three, leads to thesimilar results:  

%𝑅& 𝑅 = 17.3874%;   𝐼𝐶95% %𝑅&𝑅 =  9.7324;   31.0761  

 

If modification only implies increasing the number of replications or parts, no differences are found in 

the width of confidence interval compared with that obtained under the original data. 

Moreover, by doubling the number of operators and reducing a half the number of parts the reduction 

in interval width is achieved as well: 

%𝑅& 𝑅 = 17.2896%;   𝐼𝐶95% %𝑅&𝑅 =  6.3073;   31.63.97  

 

We can deduce from these results that which makes the difference is increasing the number of 

operators considered in the experiment. This is reasonable with the fact that having o = 3 leads to a chi-squared 

variable with only two degrees of freedom which random values will be very small.  

From these results, we consider reasonable to recommend that the experiments proposed to analyze the 

capability of a measurement system, are designed so as to ensure at least four degrees of freedom for each 

source of variation in the ANOVA.  

 

3.4Real case application 

This last subsection presents a case study of the 𝑅&𝑅 methods with destructive testing in a 

metallurgical company, where a productivity problem detected made it necessary to obtain inferential results for 

the measurement system capability indicator, which was achieved using the generalized approach to construct 

confidence intervals. The response variable of interest was time in seconds spent to carry out certain task. The 

nature of this variable makes the measuring process destructive, since once the time has passed it is not possible 

for it to be measured again. 

This issue was solved using one of the alternatives suggested by De Mast y Trip [24] to perform a 

Gauge R&R study under destructive measurements, which led to consider a nested model with four parts(𝑝 =
4), three operators(𝑜 = 3)and two replications(𝑟 = 2), to represent the time measurements obtained [25]. 

The estimates of variance components, according to the nested model assumed were: 

 

𝜎 𝐸
2 = 𝑀𝑆𝐸 = 0,006557 

𝜎 𝑂
2 =

𝑀𝑆𝑂 − 𝑀𝑆𝑃 𝑂 

𝑝𝑟
= 0,003368 

𝜎 𝑃
2 =

𝑀𝑆𝑃(𝑂) − 𝑀𝑆𝐸

𝑟
= 0,012139 

 

From these results the capability of the measurement system is computed, taking into account that 

according to the design that has been used, the repeatability is associated to the variability due to the 

experimental error and the reproducibility is associated to the variability due to the operators, that is: 

𝜎 𝑅𝑒𝑝𝑒𝑡
2 = 0,006557    𝑦   𝜎 𝑅𝑒𝑝𝑟𝑜𝑑

2 = 0,003368  
 

Thus, the estimated capability indicator results: 

 

%𝑅& 𝑅 = 44.9828% 
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It is evident that the measurement system is not capable, since it is responsible for 45% of the 

variability observed in the measurements. The point estimate was accompanied by the generalized confidence 

limits, obtained from 100,000 simulations according to the recommendation derived from the previous study. Its 

calculation required derivation of the corresponding GPQ, which differs from that expressed in (12), since this 

case supposes a different ANOVA model. 

The GPQs associated with𝜎𝑀
2  and 𝜎𝑇

2under this model are[6](reftesis): 

𝐺𝑃𝑄𝜎𝑀
2 =

𝑝𝑜 𝑟 − 1 𝑀𝑆𝐸

𝑊3

−
𝑜(𝑝 − 1)𝑀𝑆𝑃(𝑂)

𝑝𝑟 𝑊2

+
 𝑜 − 1 𝑀𝑆𝑂

𝑝𝑟𝑊1

 

𝐺𝑃𝑄𝜎𝑇
2 =

𝑝𝑜 𝑟 − 1 2𝑀𝑆𝐸

𝑟 𝑊3

+
 𝑜 − 1 𝑀𝑆𝑂

𝑝𝑟 𝑊1

+
𝑜 𝑝 − 1 2𝑀𝑆𝑃(𝑂)

𝑝𝑟 𝑊2

 

 
𝑊1, 𝑊2and𝑊3 are independent chi-squared random variables with  𝑜 − 1 , 𝑜(𝑝 − 1) and𝑝𝑜(𝑟 −

1)degrees of freedom, respectively.  

Finally, the generalized 95% confidence interval resulted: 

IC95% %R&𝑅 =  11.7297;   55.1981  
 
From which the conclusion about the performance of the measurement system is confirmed, since the 

expected range of values is above the value required for a measurement system to be considered as adequate.  

 

IV. Conclusion 
The analysis of measurement systems capability involves quantifying the variability that they introduce 

into the measurements and evaluating their contribution to the total variability observed. Repeatability and 

reproducibility studies are designed for this purpose and they are widely known in the industrial field, although 

their use is generally limited to the calculation of point estimates of the measurement system capability 

indicator. The possibility of making inferences about the indicators, such as the calculation of confidence 

intervals, requires unconventional methodologies. One of the alternatives to construct confidence intervals is 

based in the concept of generalized inference, leading to what is known as generalized confidence intervals. 

Under this approach, intervals are approximated by simulation procedures. This particularity implies that the 

repeated application of the procedure on the same data set can lead to varying confidence limits. In this work, 

we investigate the effect of the number of simulations that are necessary to guarantee a minimum variability in 

the confidence limits, achieving a balance between computational cost and precision of results. This study 

provides a basis for understanding the importance of this factor, the number of simulations, on the determination 

of the interval, mainly because we find that the probability distribution of the pivotal quantity used to compute 

the intervals is highly asymmetric to the right. This implies a greater variability in the upper confidence limit. 

The implementation of a Gauge R&R study requires designing an experiment to collect the information 

that will be analyzed. In most of the practical situations these experiments are small, in the sense that they are 

designed considering few levels of the factors of interest. Since the number of levels of factors in the experiment 

has an important role in the determination of generalized intervals, we also analyze the effect of the experiment 

size on the precision of the estimates. The results show that better results are obtained when experiments are 

designed so as to ensure at least four degrees of freedom for each source of variation.  

Finally, GCIs are applied in a real case study in which the measurement to be analyzed, processing 

times,matches with what is called destructive measurement. The use of the generalized allowed to 

deriveinferential results on the capability of the measurement system, thus adding useful information for the 

evaluation of productivity parameters. 
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