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Abstract:- For Very Large Scale Integration (VLSI) schematics and layouts the Structural verification is 

formalized. Both schematics and layouts are modeled as graphs and their structural accuracy is tied to a precise 

set of graph composition rules for defining how these blocks of schematics and layouts may be composed. 

Verification techniques like Novel, non-heuristic are introduced which allow structural verification for a series 

of schematic and layout block sizes to be performed. By means of one effective structural verification 

mechanism, an amalgamated approach to schematic design style verification, layout design rule verification and 

schematic vs. layout comparison can be provided. These verification techniques are nimble and can be 

performed with accession as the schematics and layouts are formed. In this we are implementing SBFS by 

slicing the queue at each level in the tree. The searching technique is implemented in parallel in both the queues. 

By this the number of searches is reduced and the time taken is half that is required for BFS as drawing the path 

is not done. This technique works efficiently if the goal node is after the middle node in each level. 

 

Keywords:- Breadth first search, design rules, graph, schematics, structural verification, Top down approach. 

 

I. INTRODUCTION 
 BFS is one of the techniques for traversing a tree or graph. It starts from a source or root node and 

explores all neighboring node before going to next level. It performs operations using a queue instead of a stack. 

The delay for dequeue is reduced by checking a vertex is discovered or not before enqueue operation. Then the 

time and space complexity of the algorithm is O(bd) where d is the depth of the solution and b is the branching 

factor (i.e., number of children) at each node. 

 Earlier graph searching techniques took more time as they were based on series searching i.e. node 

after node SBFS reduces this time consumption. Here we explain the technique behind SBFS and algorithm to 

search a node reducing timing constraints. 

 

II. GRAPH TERMINOLOGY 
 A graph is a pair of sets G = (V, E), where V is a set of vertices, and E is a set of pairs of distinct 

vertices called edges. A vertex u is adjacent to a vertex v if (u, v) is an edge, i.e., (u ,v) ∈ E. The set of vertices 

adjacent to v is Adj(v). An edge E = (u, v) is incident on the vertices u and v, which are the ends of e. We use Kn 

to denote such a graph. A graph H is called the complement of graph G = (V, E) if H = (V, F), where, F=E (K|V|) 

– E. The node from which the search starts is known as root node and the node in the search tree having no 

children is considered as leaf node. 

 

III. IMPLEMENTATION 
 SBFS implementation is based on Top down approach. A top down approach designs a strategy for the 

program. We dwell on the major steps or subtasks in a program. As we enhance each of these steps, we come 

close to a point at which the algorithm for allthese steps becomes both corporeal and easily adaptable to a 

particular programming language.  

 

 Once we determine the major subtasks for the program as a whole, we in effectcan divide the problem 

into several smaller programs. As these subtasks are so simple it is possible that we can straight away see how to 

write the code to accomplish thesetasks. This type of design methodology results in a "tree-like" structure. 

While the trunk of a tree divides into a number of large branches, every large branch splits into smaller branches 

and each small branch splits into twigs, the modules at each level spawns several modules at the next level  in a 

top down design and each one of these gives rise to further modules at the next level.    

 In SBFS, we are considering all the nodes(n) in an each level and taking them in two queues for 

searching parallel .Two queues are q1 and q2, where q1 has a length of  
n+1

2
 if n is odd  and 

n

2 
 if n is even and 
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q2 has a length of n-(q1_length).Both the queues are searched parallel at the same time. so the searching time is 

reduced than the other techniques. The time taken to search for a goal node is almost half of the time taken for 

BFS. Write the algorithm for each step (function)  in order. 

 

IV. ALGORITHM 
 sbfs (n,l,q1_length ,q2_length) 

 { 

    N: no.of levels in a tree; 

   For (L=0;L<=N-1;L++) 

                { 

   n=total no.of nodes in L level; 

   if(n is even) 

   q1 length=(n/2); 

   else 

   q1 length=((n+1)/2); 

   q2 length=n-(q1 length); 

intQ1[q1_ length];*//* define queues Q1,Q2*//* 

intQ2[q2_ length]; 

Place the nodes in Q1 and remaining nodes in Q2; 

While(Q1,Q2 are not empty) 

For(x=0;x<=q1_ length;x++) 

{ 

If(Q1[x]==goal node) 

  goal node found; 

  stop 

Else if(Q2[x]==goal node) 

Goal node is found; 

Stop 

 Else 

Goal node not found; 

} 

          } 

} 

 Let us explain the algorithm in detail with the help of an example. consider a graph of 5 levels as 

shown in Fig 1, each node consists of two child nodes at each level.As we discussed earlier two queues are 

considered namely q1 and q2.length of q1 and q2 varies at each and every level as level value is being  updated 

for every iteration. 

 

 
Fig 1: Representation of a graph 
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 In step1,level 1 is considered which is having only one node A,therefore q1 length is one.Let us 

consider that H is our goal node. A is compared with H , search is performed in one unit time within one 

iteration and returns failure. In step 2, level 2 is considered with two child nodes of A namely B and C,length of 

q1 is 1 and q2 is also one. Searching is done in 1unit of time within one iteration and returns failure, for two 

levels searching has been performed with in two iterations. It continues until goal node is found. All the steps 

are illustrated in the below Fig 2. 

 

 

 
Fig 2: Step wise algorithm explanation 

 

V. TIMING CONSTRAINTS 
 At each clock pulse simultaneously both queues q1 and q2 are searched.Output will be high if search is 

success i.e. if goal node is found in any one of the queues; whereas the output will be low if search is a failure 

i.e. goal node is not found in any one of the queues. 

 Let us explain it with an example, consider the graph in above Fig 2. At first clock pulse q1 has A and 

Q2 has D which aren’t our goal nodes so, corresponding output will be low. Similar searches are performed 

until our goal node is found. 

 At an instant of time i.e. at seventh clock pulse q1 is having H and q2 is having M where His our 

required goal node therefore, the corresponding output at the seventh clock pulse is high. 

 

The timing diagrams are shown in below Fig 3. 

q1[0] A A Level 1

step1

step2

q1[1] B B C Level 2

q2[1] C

Step 3

q1[2] D E D E F G Level 3

q2[2] F G

Step4

q1[3] H H I J K L M N O Level 4

q2[3] L
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Fig 3: Timing Diagram 

 

VI. CONCLUSION 
 In this paper, we discussed about a new searching technique  using breadth first search by slicing the 

graphs in much less time compared to the various other techniques being used. In the previous illustrated 

algorithms so far, searching is done by means of serial search node by node in each and every level, which takes 

much time.it was overcome by SBFS in which searching is done parallel and which searches nodes in less 

amount of time. The technique is explained in detail.Also, we developed an algorithm and derived the result 

using timing constraints.The results of this work demonstrate the performance improvement potential of 

integrating the top down approach into BFS. This work presents an algorithmic innovation to accelerate the 

processing of more difficult-to-parallelize BFS. 
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