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Abstract :- In a distribution network it is important to decide the locations of facilities that impact not only the 
profitability of an organisation but the ability to serve customers. Generally the location-routing problem is to 

minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery 

routes that satisfy some restrictions. In this paper we impose forbidden route in the constraint. We use integer 

programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model 
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I. INTRODUCTION  

 
The design of a distribution system begins with the questions of where to locate the facilities and how 

to allocate customers to the selected facilities. These questions can be answered using location-allocation 

models, which are based on the assumption that customers are served individually on out-and-back routes. 

However, when customers have demands that are less-than-truckload and thus can receive service from routes 

making multiple stops, the assumption of individual routes will not accurately capture the transportation cost. 

Therefore, the integration of location-allocation and routing decisions may yield more accurate and cost-

effective solutions. 
 

Therefore determining the locations of facilities within a distribution network is an important decision 

that impacts not only the profitability of an organization but the ability to serve customers. Classical 

assumptions in location modeling are that deliveries are made on out-and-back routes visiting a single customer 
 
(or that customer’s travel individually to the site). Under this assumption, the cost of delivery is independent of 

other deliveries made. In many contexts, however, deliveries are made along multiple stop routes visiting two or 

more customers; in this case, the cost of delivery depends on the other customers on the route and the sequence 

in which they are visited. In order to capture accurately the cost of multiple stop routes within a location model, 

the routing problem must be solved at the same time as the location problem. 
 

In its most general form, the location-routing problem (LRP) seeks to minimize total cost by 
simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that should 
satisfy requirements, such as, customer demands, number of vehicles, and each route begins and end at the same 
facility. .  
There are other things that should be considered such as: 
 
1. Perishable goods delivery problems have temperature restrictions to prevent spoilage that often translate into 

route duration or route length constraints.  
 
2. Time critical delivery problems, such as express package delivery, have time deadline restrictions that limit 

the duration or length of routes.  

 

The Vehicle Routing Problem (VRP) is defined on a given graph G = (V, A), where V = {v1,v2,.. . ,vn} 

is a set of vertices and A  {(vi, vj) : i  j, vi, vj  V} is the arc set. An optimal set of routes, composed of a 

cyclic linkage of arcs starting and ending at the depot, is selected to serve a given set of customers at vertices. 

The problem aims at minimizing the total travel cost (proportional to the travel times or distances) and 

operational cost (proportional to the number of vehicles used). This problem was first introduced by Dantzig 

and Ramser in 1959 to solve a real-world application concerning the delivery of gasoline to service stations. A 

comprehensive overview of the Vehicle Routing Problem can be found in Toth and Vigo (2002) which 

discusses problem formulations, solution techniques, important variants and applications. 
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Forbidden route involving pairs of edges occur frequently (“No left turn”) and can occur dynamically 

due to rush hour constraints, lane closures, construction, etc. Longer forbidden subpaths are less common, but 

can arise, for example if heavy traffic makes it impossible to turn left soon after entering a multi-lane roadway 

from the right. If we are routing a single vehicle it is more natural to find a detour from the point of failure when 

a forbidden path is discovered. 
 

Location-routing problems are clearly related to both the classical location problem and the vehicle 
routing problem. In fact, both of the latter problems can be viewed as special cases of the LRP. If we  
require all customers to  be  directly linked  to a depot, the  LRP  becomes a standard location problem. If, 
on  the  other  hand,  we  fix  the  depot  locations,  the  LRP  reduces  to a  VRP. From a practical 
viewpoint,  location-routing  forms  part  of  distribution  management,  while from a  mathematical  point of 
view, it can usually be  modeled  as a combinatorial optimization problem. We note that this is  an NP-  
hard  problem,  as  it  encompasses  two  NP-hard  problems  (facility  location  and  vehicle  routing). Since a  
number of problem versions exist,  we cannot reproduce  all the formulations here. In the first instance, 
the  reader  is  referred  to  [2] for an  excellent  review  of  various  formulations.   

Most  of  the research to date  has  focused  on  heuristic  methods  since  LRPs merge two  NP-hard 
 
problems. The heuristics generally decompose the problem into its three components, facility location, customer 

allocation to facilities and vehicle routing, and solve a series of well-known problems such as p-median, 

location-allocation and vehicle routing. Exact methods have been developed for a small number of LRP models 

that are derived from two-index flow formulations for the vehicle routing problem (VRP). Laporte and Nobert 

[3] solve a single depot model by a constraint relaxation method. 
 

Laporte [2] develops an equivalent model and also extends the model to the case where the number of 

vehicles used is a variable in the model. Laporte et al. [5] solve a multi-depot problem in which at most p 

facilities are located by adapting REVERSE algorithm. The largest problems solved have seven candidate 

facilities and 40 customers. Laporte et al. [4] solve a multi-depot capacitated LRP using a constraint relaxation 

method. In their work, the largest problem solved to optimality has eight candidate facilities and 20 customers. 

Laporte et al. [4] use a branch and-bound procedure to solve asymmetric LRPs that include as many as three 

candidate facilities and 80 customers. . Guerra et al. [10] propose a heuristic algorithm for solving LRP in a 

logistic system. Toyoglu et al. [7] consider the LRP using a combination of facility location and vehicle routing 

problems. The main objective of their paper is to develop LRP with fewer constraints and variables. A nice 

survey of LRP can be found in Drexl and Schneider [1]. 
 

Success in developing exact methods for solving larger instances of LRPs is likely to come from 

leveraging the advances in exact methods for solving VRPs and other difficult combinatorial optimization 

problems. Motivated by the success of set partitioning formulations for a variety of transportation problems, 

such as the VRP with time windows (e.g. [8]), the pickup and delivery problem with time windows (e.g. [11]) 

and the crew scheduling problem (e.g. [9]), we propose a feasible neighborhood search in the context of 

developing exact algorithms for LRPs. The two main contributions of this paper is to present a new model for 

the LRP with distance constraints and forbidden route, then we improve the strategy of examining a reduced 

problem in which most of the integer variables are held constant and only a small subset allowed varying in 

discrete steps . 

 

II. PROBLEM FORMULATION  
 

In this section, we present a new set-partitioning-based formulation of the LRP with distance 

constraints. The objective of the LRP with distance constraints is to select a set of locations and to construct a 

set of associated delivery routes in such a way as to minimize facility costs plus routing costs. The set of routes 

must be such that each customer is visited exactly once by one route and that the length of each route does not 

exceed the maximum distance. 

 
III. INITIAL MODEL  

 
The model developed in this paper is based on Berger et al. (2007). Let I be the set of customer 

locations and J be the set of candidate facility locations. We define the graph G=(N,A), where  is the 

set of nodes and A=N×N is the set of arcs. We let dij for all (i, j) A be the distance between nodes i and j. The 
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distances satisfy the triangle inequality. The distances satisfy the triangle inequality. For applications in which 

the distance constraint applies to the length of the route to the last customer instead of the length of the return 

trip to the depot, we set to 0 for all (i, j) with i I and j  J. We define a feasible route k associated with 
 
facility j as a simple circuit that begins at facility j, visits one or more customer nodes and returns to facility j 

and that has a total distance of at most the maximum distance, denoted M. Then, we let denote the set of all  

feasible routes associated with the facility j for all j  J. The cost of a route k   is the sum of the costs of the 

arcs in the route. The cost of an arc (i, j)  A is proportional to the distance to reflect distance related 

operating costs. 

 
a. Parameters 
 
 
 
 
 

 

cost of route k associated with facility j 

fixed cost associated with selecting facility 

j,  
 
 
b.  Decision Variables 
 
 
 
 
 
 
 
 
 
 
 
 

 
(LRP-DC) Minimize (1) 

s.t. (2) 
 

(3) 
 

(4) 
 

(5) 
 
 

The objective function (1) seeks to minimize the weighted sum of the facility costs and the routing 

costs. Constraints (2) are the set partitioning constraints that require each customer i be served by exactly one of 

the selected routes. Constraints (3) require that facility j be selected if a route k associated with facility j is 

selected. Constraints (4) and (5) are standard binary restrictions. The LRP with distance constraints is NP-hard. 

By placing very large costs on the arcs connecting two customer nodes, we obtain a special case of the model in 

which the selected routes contain exactly one customer.  

As presented, the formulation LRP-DC potentially contains an exponential number of variables  and an 

exponential number of constraints (3). Thus, for instances of practical size, enumerating all of the feasible 
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routes and solving the resulting integer program is unlikely to be effective. Instead, we will use feasible 
neighborhood search for solving the model. 

 
The model for vehicle routing with forbidden route can be written as:  

(VRP-FR)  

min (6) 

s.t. (7) 
 
 
 

(8) 
 
 
 

(9) 
 
 
 

(10) 
 
 

(11) 
 

(12) 
 
 

The combination of the two models we can get a model for LRP with Distance and Forbidden Route 
constraints. 

 

IV. NEIGHBOURHOOD SYSTEM 
 

It should be noted that, generally, in integer programming the reduced gradient vector, which is 

normally used to detect an optimality condition, is not available, even though the problems are convex. Thus we 

need to impose a certain condition for the local testing search procedure in order to assure that we have obtained 

the “best” suboptimal integer feasible solution. 
 

Scarf (1986) has proposed a quantity test to replace the pricing test for optimality in the integer 

programming problem. The test is conducted by a search through the neighbours of a proposed feasible point to 

see whether a nearby point is also feasible and yields an improvement to the objective function.  
Let  be an integer point belongs to a finite set of neighbourhood  We define a neighbourhood 

system associated with  that is, if such an integer point satisfies the following two requirements 

 
1.  
2. 

 
With respect to the neighbourhood system mentioned above, the proposed integerizing strategy can be 

described as follows.  
Given a non-integer component,  of an optimal vector ,  The adjacent points of  being 

considered are  If one of these points satisfies the constraints and yields a minimum 

deterioration of the optimal objective value we move to another component, if not we have integer-feasible 

solution.  
Let  be the integer feasible point which satisfies the above conditions. We could then say if  

implies that the point  is either infeasible or yields an inferior value to the objective function obtained with 

respect to . In this case  is said to be an “optimal” integer feasible solution to the 
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integer programming problem. Obviously, in our case, a neighborhood search is conducted through proposed 

feasible points such that the integer feasible solution would be at the least distance from the optimal continuous 

solution. 

 
V. THE BASIC APPROACH  

 
Before we proceed to the case of MINLP problems, it is worthwhile to discuss the basic strategy of 

process for linear case, i.e., Mixed Integer Linear Programming (MILP) problems.  
Consider a MILP problem with the following form 

 
Minimize (13) 

Subject to (14) 

 (15) 

integer for some (16) 

A component of the optimal basic feasible vector , to MILP solved as continuous can be written 

as  

 (17) 
 

Note that, this expression can be found in the final tableau of Simplex procedure. If  is an integer variable 

and we assume that  is not an integer, the partitioning of  into the integer and fractional components is that 

given 
 

(18) 
 

suppose we wish to increase  to its nearest integer, . Based on the idea of suboptimal solutions 

we may elevate a particular nonbasic variable, say , above its bound of zero, provided , as one of 

the element of the vector , is negative. Let  be amount of movement of the non variable , such that 

the numerical value of scalar  is integer. Referring to Eqn. (17),  can then be expressed as 
 
 

 

while the remaining nonbasic stay at zero. It can be seen that after substituting (18) into (19) for  and 

taking into account the partitioning of  given in (18), we obtain 
 

 

Thus,  is now an integer. 
 

It is now clear that a nonbasic variable plays an important role to integerized the corresponding basic 

variable. Therefore, the following result is necessary in order to confirm that must be a non-integer variable to 

work with in integerizing process. 

 

Theorem 1. Suppose the MILP problem -  has an optimal solution, then some of the nonbasic 

variables. , must be non-integer variables.  
Proof:  

Solving problem as a continuous of slack variables (which are non-integer, except in the case of 

equality constraint). If we assume that the vector of basic variables consists of all the slack variables then all 

integer variables would be in the nonbasic vector  and therefore integer valued. 
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VI. DERIVATION OF THE METHOD  
It is clear that the other components, , of vector  will also be affected as the numerical value 

of the scalar  increases to . Consequently, if some element of vector , i.e.,  for , are 

positive, then the corresponding element of  will decrease, and eventually may pass through zero. However, 

any component of vector x must not go below zero due to the non-negativity restriction. Therefore, a formula, 

called the minimum ratio test is needed in order to see what is the maximum movement of the nonbasic   
such that all components of x remain feasible. This ratio test would include two cases. 
 

1. A basic variable   decreases to zero (lower bound) first.  

2. The basic variable,   increases to an integer.  

 
Specifically, corresponding to each of these two cases above, one would compute 

 
(20) 

 
(21) 

 

How far one can release the nonbasic  from its bound of zero, such that vector  remains feasible, will 

depend on the ratio test  given below 
 
 

(22) 

 

obviously, if , one of the basic variable  will hit the lower bound before  becomes integer. 

If , the numerical value of the basic variable  will be integer and feasibility is still maintained. 

Analogously, we would be able to reduce the numerical value of the basic variable  to its closest integer 

. In this case the amount of movement of a particular nonbasic variable, , corresponding to any 

positive element of vector , is given by 
 

(23) 

 
in Linear Programming (LP) terminology the operation conducted in Eqns. (17) and (18) is called the pricing 

operation. The vector of reduced costs  is used to measure the deterioration of the objective function value 
 
caused by releasing a nonbasic variable from its bound. Consequently, in deciding which nonbasic should be 

released in the integerizing process, the vector  must be taken into account, such that deterioration is 
 
minimized. Recall that the minimum continuous solution provides a lower bound to any integer-feasible 

solution. Nevertheless, the amount of movement of particular nonbasic variable as given in Eqns. (11) or (15), 

depends in some way on the corresponding element of vector . Therefore it can be observed that the  
deterioration of the objective function value due to releasing a nonbasic variable  so as to integerize a 

basic variable  may be measured by the ration 
 

(24) 
 
 

where  means the absolute value of scalar a. 
 

In order to minimize the detonation of the optimal continuous solution we then use the following 
strategy for deciding which nonbasic variable may be increased from its bound of zero, that is, 
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(25) 

 
 

From the “active constraint” strategy and the partitioning of the constraints corresponding to basic , 

superbasic  and nonbasic  variables we can write 
 

(26) 
 

 
or 
 

(27) 
 

(28) 

 

The basis matrix  is assumed to be square and nonsingular, we get 
 

(29) 
 
Where  

(30) 
 

(31) 
 

(32) 

 
Expression (28) indicates that the nonbasic variables are being held equal to their bound. It is evident 

through the “nearly” basic expression of Eqn. (29), the integerizing strategy discussed in the previous section, 

designed for MILP problem can be implemented. Particularly, we would be able to release a nonbasic variable 

from its bound, Eqn.(28) and exchange it with a corresponding basic variable in the integerizing process, 

although the solution would be degenerate. Furthermore, the Theorem (1) above can also be extended for 

MINLP problem. 

 
Theorem 2. Suppose the MINLP problem has a bounded optimal continuous solution, then we can always get a 

non-integer  in the optimum basic variable vector.  
Proof.  
1. If these variables are nonbasic, they will be at their bound. Therefore they have integer value.  

2. If a   is superbasic, it is possible to make   basic and bring in a nonbasic at its bound to replace it in the   
superbasic. 

 
However, the ratio test expressed in (14) cannot be used as a tool to guarantee that the integer solution 

optimal found gill remains in the feasible region. Instead, we use the feasibility test from Minos in order to 

check whether the integer solution is feasible or infeasible. 

 
6.1 Pivoting.   

Currently, we are in a position where particular basic variable,  is being integerized, thereby a 

corresponding nonbasic variable, , is being released from its bound of zero. Suppose the maximum 

movement of  satisfies 
 

 

such that  is integer valued to exploit the manner of changing the basis in linear programming, we would be 

able to move  into  (to replace ) and integer-valued  into S in order to maintain the integer 

solution. We now have a degenerate solution since a basic variable is at its bound. The integerizing process 
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continues with a new set . In this case, eventually we may end up with all of the integer variables being 

superbasic. 

 
Theorem 3. A suboptimal solution exists to the MILP and MINLP problem in which all of the integer variables 

are superbasic. 

 
Proof.  
1. If all of the integer variables are in N, then they will be a bound.   
2. If an integer variable is basic it is possible to either   

 Interchange it with a superbasic continuous variable, or 


 Make this integer variable superbasic and bring in a nonbasic at its bound to replace it in the basis which 
gives a degenerate solution. 

 

The other case which can happen is that a different basic variables  may hit its bound before  

becomes integer. Or in other words, we are in a situation where 
 
 

In this case we move the basic variable  into  and its position in the basic variable vector would be 

replaced by nonbasic . Note  is still a non-integer basic variable with a new value. 

 
VII. FEASIBLE NEIGHBOURHOOD HEURISTIC SEARCH 

 
While a straightforward brand-and-bound approach could be adopted, for many classes of large-scale 

problems such a procedure would be prohibitively expensive in terms of total computing time. We have adopted 

the approach of examining a reduced problem in which most of the integer variables are held constant and only 

a small subset allowed varying in discrete steps. 
 

This may be implemented within the structure of a program by marking all integer variables at their bounds 
at the continuous solution as nonbasic and solving a reduced problem with these maintained as nonbasic.  

The procedure may be summarized as follows:  
Step 1 : Solve the problem ignoring integrality requirements. 
Step 2 : Obtain a (sub-optimal) integer feasible solution, using heuristic rounding of the   continuous 
 solution. 

Step 3 : Divide the set I of integer variables into the set I1  at their bounds that were nonbasic at the 

 continuous solution and the set I2,  I = I1+ I2. 

Step 4 : Perform a search on the objective function, maintaining the variables in I1 nonbasic and 

 allowing only discrete changes in the values of the variables in I2. 

Step 5 : At the solution obtained in step 4, examine the reduced costs of the variables in I1. If any 
 should be released from their bounds, add them to set I2  and repeat from step 4, otherwise 
 terminate. 

 
The above summary provides a framework for the development of specific strategies for particular 

classes of problems. For example, the heuristic rounding in step 2 can be adapted to suit the nature of the 

constraints, and step 5 may involve adding just one variable at a time to the set I2.  
At a practical level, implementation of the procedure requires the choice of some level of tolerance on 

the bounds on the variables and also their integer infeasibility. The search in step 4 is affected by such 

considerations, as a discrete step in a super basic integer variable may only occur if all of the basic integers 

remain within the specified tolerance of integer feasibility. 
 

In general, unless the structure of the constraints maintains integer feasibility in the integer basic 

variables for discrete changes in the superbasic, the integers in the set I2 must be made superbasic. This can 

always be achieved since it is assumed that a full set of slack variables is included in the problem. 
 
 

 
www.irjes.com 39 | Page 



Optimization Model for a Distribution System based on Location-Routing with Distance and forbidden route 
 

VIII. CONCLUSIONS 
 

This paper presents a LRP model in which there are some forbidden route. The framework of the 

model stems from VRP with time windows with forbidden route. Then we exclude the forbidden route from the 

previous assigned route. We solve the model using a feasible neighbourhood search. 
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