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Abstract: The rapid integration of Unmanned Aircraft Systems (UAS), or drones, into the ecosystem of civil 

aviation logistics presents a paradigm shift, offering unprecedented efficiencies in last-mile delivery, warehouse 

management, and supply chain resilience. However, this integration concurrently introduces profound and 

multi-faceted risks to airspace safety, operational security, and public acceptance. Traditional risk management 

methodologies, often reactive and siloed, prove inadequate for the dynamic, high-density, and complex operations 

envisaged for future urban air mobility. This paper therefore proposes a novel, holistic framework for UAS Traffic 

Risk Management (UTRM). The core of this framework is the application of Bayesian Networks (BNs) to move 

beyond descriptive analytics towards a predictive and diagnostic probabilistic model. This paper systematically 

deconstructs the risk taxonomy into four pillars: Strategic-Regulatory, Tactical-Operational, Technological, and 

Human-Organizational. For each pillar, key risk nodes are identified and their causal interdependencies mapped. 

A BN model is constructed to quantitatively analyze these relationships, allowing for the computation of posterior 

probabilities of catastrophic events, such as mid-air collisions or ground impacts, given observed evidence. This 

enables dynamic risk assessment, root cause diagnosis, and the quantitative evaluation of mitigation strategies. 

The paper further provides a comprehensive review of over 40 recent studies (2019-2024) in UTM, 

detect-and-avoid systems, regulatory frameworks, and human factors. Finally, data-driven mitigation strategies 

are proposed, advocating for a tightly integrated approach combining robust regulation, technological 

redundancy, advanced analytics, and a pervasive safety culture. The conclusion underscores that the sustainable 

commercialization of urban air logistics is contingent upon the establishment of such a rigorous, evidence-based, 

and adaptive risk management paradigm. 
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I. Introduction 

The global civil aviation logistics sector stands at the precipice of a transformation, driven by the 

relentless pursuit of efficiency, speed, and sustainability. Within this context, the utilization of Unmanned Aircraft 

Systems (UAS) has transitioned from a technological novelty to a core operational strategy for leading logistics 

corporations and e-commerce platforms (Kellermann et al., 2020). The value proposition is compelling: UAS 

offer the potential to circumvent terrestrial congestion, reduce delivery times from hours to minutes, lower carbon 

emissions per package, and access remote or difficult-to-reach areas (Figliozzi & Jennings, 2020). 

However, the vision of dense, automated drone traffic seamlessly weaving through urban canyons is 

fraught with significant technical and regulatory challenges. The primary impediment to this vision is risk. The 

introduction of a large number of automated or remotely piloted aircraft into shared airspace creates a complex 

system-of-systems where failures can propagate unpredictably, with potentially catastrophic consequences 

(Clothier et al., 2021). These risks are not merely theoretical; incidents involving drone sightings near airports, 

collisions with structures, and losses of link are already documented (EASA, 2021). 

The academic and industrial response has been the development of the concept of UAS Traffic 

Management (UTM). While UTM provides the necessary informational infrastructure for coordination, it is 

primarily a platform for data exchange and flight authorization. It does not, in itself, constitute a comprehensive 

risk management framework. Risk management requires the deeper, analytical capability to assess, predict, and 

mitigate the probability and severity of adverse events. 
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Current approaches to UAS risk analysis often rely on fault trees, event sequence diagrams, or linear risk 

matrices. While useful, these methods struggle with the dynamic interdependencies and uncertainties inherent in 

UAS operations. They are typically static and do not easily accommodate new evidence or allow for diagnostic 

reasoning. 

To address this gap, this paper argues for the formal adoption of Bayesian Networks (BNs) as the 

analytical engine for a holistic UTRM framework. BNs are probabilistic graphical models that represent a set of 

variables and their conditional dependencies via a directed acyclic graph (DAG). They are exceptionally 

well-suited for UTRM for several reasons: (1) they can model complex, non-linear relationships between 

heterogeneous factors (e.g., weather, technology, human performance); (2) they can perform both predictive 

(forward) and diagnostic (backward) inference, crucial for both planning and incident investigation; and (3) they 

can integrate empirical data with expert judgment, which is vital in an emerging field where hard data is still 

accumulating. 

The objective of this paper is threefold: 

1. To deconstruct the problem space of UAS traffic risk into a structured taxonomy. 

2. To construct a conceptual BN model that captures the key risk factors and their causal relationships. 

3. To leverage this model to propose concrete, prioritized, and data-driven risk mitigation strategies for 

stakeholders in civil aviation logistics. 

This analysis is intended for a broad audience, including regulators, UAS manufacturers, logistics operators, 

aerospace engineers, and academic researchers, providing a common framework to advance the safety and 

reliability of drone logistics. 

 

II. Literature Review: The State of UAS Risk Management 

The field of UAS risk management is rapidly evolving. This review synthesizes recent literature into key thematic 

areas. 

2.1. The UTM Ecosystem and Strategic Deconfliction 

Research on UTM has matured from conceptual frameworks to implementation trials. NASA's initial UTM 

project laid the groundwork for a federated, cloud-based architecture (Kopardekar et al., 2019). Subsequent 

research has focused on strategic conflict management, developing algorithms for pre-flight path planning that 

minimize the probability of intersection with other UAS and known manned aircraft routes (Wang et al., 2021; 

Jeong et al., 2022). The integration of UTM with traditional Air Traffic Management (ATM) remains a critical 

challenge, with studies exploring interfaces and protocols for safe coexistence in controlled airspace (Johnson et 

al., 2020; Eurocontrol, 2023). 

2.2. Detect-and-Avoid (DAA) Technologies 

DAA is the technological linchpin for tactical in-flight safety. Recent literature reflects a shift from purely 

cooperative systems using ADS-B to hybrid approaches. Studies evaluate the performance of non-cooperative 

sensing modalities like computer vision (Wang et al., 2022), radar (Zeng et al., 2021), and acoustic sensors 

(Musiani et al., 2023) for detecting non-cooperative aircraft. A significant focus is on sensor fusion algorithms, 

particularly using machine learning, to improve detection accuracy and reduce false alarms (Lin et al., 2023). The 

development of performance standards for DAA, led by organizations like RTCA and EUROCAE, is also an 

active area of study (RTCA, 2022). 

2.3. Regulatory Frameworks and Standardization 

The regulatory landscape is transitioning from prescriptive rules to performance-based and risk-based frameworks. 

The JARUS SORA (Specific Operations Risk Assessment) has become a globally influential methodology for 

categorizing ground and air risks (JARUS, 2022). Research critiques and refines SORA, particularly for complex 

BVLOS operations in urban environments (Lyu et al., 2023). Parallel efforts focus on standardizing UAS 

components, communications (e.g., Remote ID), and cybersecurity protocols to ensure interoperability and 

security within the UTM ecosystem (Strohmeier et al., 2021; FAA, 2023). 

2.4. Human Factors and Organizational Safety 

As operations scale, human factors become increasingly critical. Research examines the role of the remote pilot, 

transitioning from direct vehicle control to a system management role, leading to new human-machine interface 

challenges (McClean et al., 2021). The concept of a "UAS Flight Desk" operator managing multiple autonomous 

vehicles is being explored, with studies on vigilance, workload, and situation awareness (Fernandez et al., 2022). 

The adoption of Aviation Safety Management Systems (SMS) into UAS operations is also a key research trend, 

emphasizing a proactive organizational safety culture (Shappell & Wiegmann, 2020). 

2.5. Application of Bayesian Methods in Aerospace Risk 

The use of BNs in safety-critical industries is well-established. In aerospace, they have been used for aircraft 

accident investigation (Wilson et al., 2019), ATM safety assessment (Tanguy et al., 2020), and recently, for UAS 

safety. Recent applications include ground risk assessment for UAS flight planning (Lyu et al., 2021), modeling 

the reliability of UAS sense-and-avoid systems (Zhou et al., 2022), and assessing the risk of UAS operations over 

crowds (Fu et al., 2023). This paper builds upon this emerging body of work by proposing a comprehensive BN 
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that integrates all pillars of UTRM into a single, unified model. 

 

III. A Pillared Taxonomy of UAS Traffic Risks 

A systematic analysis requires a structured taxonomy. We propose that UAS traffic risks can be categorized into 

four interdependent pillars. 

3.1. Pillar I: Strategic and Regulatory Risks 

These are risks arising from inadequate pre-flight planning, authorization, and regulatory oversight. 

• Airspace Violation: Unauthorized entry into restricted, prohibited, or controlled airspace due to 

improper geofencing, database errors, or intentional misuse. 

• Strategic Conflict: Inadequate pre-flight deconfliction leading to planned flight paths that intersect with 

other UAS or scheduled manned aircraft routes. 

• Operational Non-Compliance: Failure to adhere to regulatory requirements such as altitude ceilings, 

VLOS/BVLOS limitations, or pilot certification standards. 

3.2. Pillar II: Tactical and Operational Risks 

These are real-time risks encountered during flight execution. 

• Mid-Air Collision Risk: The risk of physical collision with other airspace users (manned or unmanned), 

primarily mitigated by DAA systems. 

• Ground Impact Risk: The risk of the UAS crashing and causing injury to people or damage to property 

on the ground. 

• Loss of Control: Caused by loss of Command and Control (C2) link, system failures (e.g., propulsion, 

battery), or severe weather encounters. 

• Dynamic Airspace Hazards: Unpredictable incursions by non-cooperative aircraft (e.g., general 

aviation, helicopters) or emergent obstacles (e.g., cranes). 

3.3. Pillar III: Technological and Infrastructure Risks 

These risks stem from the failure or inadequacy of hardware, software, and supporting infrastructure. 

• DAA System Failure: Failure of the sense-and-avoid system due to sensor limitations, software errors, 

or adverse environmental conditions (e.g., fog blinding optical sensors). 

• C2 Link Vulnerability: Susceptibility to attenuation, interference, jamming, or cyber-spoofing, leading 

to lost link or malicious takeover. 

• UTM Service Failure: Disruptions in the UTM cloud service providing weather, traffic, and constraint 

data. 

• UAS Airworthiness Failures: Mechanical or electrical failures of the UAS itself, such as battery 

depletion, motor failure, or GPS signal loss. 

3.4. Pillar IV: Human and Organizational Risks 

These are risks introduced by human error and flawed organizational processes. 

• Remote Pilot Error: Mistakes in decision-making, manual flight control, or response to emergencies, 

often exacerbated by poor interface design or high workload. 

• Maintenance Error: Improper maintenance leading to latent technical failures. 

• Security Breach: Human factors in cybersecurity, such as poor password management or susceptibility 

to social engineering attacks. 

• Deficient Safety Culture: An organizational culture that prioritizes operational tempo over safety, 

discourages reporting of incidents, or fails to implement a robust SMS. 

 

IV. Bayesian Network Modeling for UTRM 

4.1. Theoretical Foundation of Bayesian Networks 

A BN is a tuple (G, P), where G is a Directed Acyclic Graph (DAG) and P is a set of Conditional Probability 

Distributions. The graph G consists of nodes (representing random variables) and directed edges (representing 

causal or influential relationships). Each node has a Conditional Probability Table (CPT) that quantifies the 

probabilistic dependence on its parent nodes. The joint probability distribution of all variables is given by the 

chain rule: 

P(X₁, X₂, ..., Xₙ) = ΠᵢP(Xᵢ | Parents(Xᵢ)) 

This structure allows for efficient computation of posterior probabilities via Bayesian inference: P(Cause | Effect) 

= [P(Effect | Cause) * P(Cause)] / P(Effect). 

4.2. Constructing the UTRM BN Model 

Based on the taxonomy in Section 3, we define the key nodes of our BN model. Nodes can be binary (e.g., 

True/False) or multi-state (e.g., Low/Medium/High). 

• Root Nodes (Input Variables): 

o Weather Conditions: [Good, Adverse] 

o Airspace Complexity: [Low, Medium, High] 
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o Technical Reliability: [High, Medium, Low] 

o C2 Link Robustness: [Robust, Vulnerable] 

o Pilot Proficiency: [Proficient, Novice] 

o Organizational SMS: [Effective, Deficient] 

o Regulatory Compliance: [Full, Partial, None] 

• Intermediate Nodes: 

o DAA Performance: [Effective, Degraded, Failed] (Influenced by Weather, Technical 

Reliability) 

o C2 Link Status: [Stable, Unstable, Lost] (Influenced by C2 Link Robustness, Weather, 

Technical Reliability) 

o System Health: [Nominal, Degraded, Failed] (Influenced by Technical Reliability, 

Maintenance) 

o Strategic Deconfliction: [Adequate, Inadequate] (Influenced by Regulatory Compliance, UTM 

Service Status) 

• Output Nodes (Consequences): 

o Near-Miss Event: [Yes, No] (Influenced by DAA Performance, Airspace Complexity, C2 Link 

Status, Strategic Deconfliction) 

o Loss of Control: [Yes, No] (Influenced by System Health, C2 Link Status) 

o Mid-Air Collision: [Yes, No] (Influenced by Near-Miss Event, DAA Performance) 

o Ground Impact: [Yes, No] (Influenced by Loss of Control, Airspace Complexity [for location 

severity]) 

o Security Breach: [Yes, No] (Influenced by C2 Link Robustness, Organizational SMS) 

The resulting DAG visually represents the causal pathways from root causes to final outcomes. 

 

4.3. Populating the Conditional Probability Tables (CPTs) 

The CPTs can be populated through multiple methods: 

1. Expert Elicitation: Subject Matter Experts (SMEs) provide probability estimates using structured 

protocols (e.g., SHELF). 

2. Historical Data: Using data from incident reports, flight logs, and maintenance records (e.g., from FAA 

or EASA databases). 

3. Simulation Data: Running Monte Carlo simulations or digital twins of UAS operations to generate 

failure probability data. 

 

CPT for DAA Performance given its parents: 
Weather Conditions Technical Reliability P(DAA = Effective) P(DAA = Degraded) P(DAA = Failed) 

Good High 0.995 0.004 0.001 

Good Medium 0.92 0.06 0.02 

Good Low 0.85 0.10 0.05 

Adverse High 0.80 0.15 0.05 

Adverse Medium 0.65 0.25 0.10 

Adverse Low 0.50 0.30 0.20 

 

4.4. Performing Inference: Scenario Analysis 

The power of the BN is realized through inference. We can perform: 

• Predictive Analysis: What is P(Mid-Air Collision = Yes) given a forecast of adverse weather and high 

airspace complexity? This provides a quantitative risk score for a planned mission. 

• Diagnostic Analysis: Given that a Near-Miss Event occurred, what is the most probable cause? The BN 

can calculate P(Weather = Adverse | Near-Miss=Yes), P(DAA Performance = Failed | Near-Miss=Yes), 

etc., guiding incident investigation. 

• Sensitivity Analysis: Which nodes have the greatest influence on the probability of a Mid-Air Collision? 

This helps prioritize research and investment (e.g., improving DAA may yield a higher risk reduction 

than improving pilot training for a specific operation). 

• Intervention Analysis ("What-If"): If we invest in a more robust C2 link technology, changing the C2 

Link Robustness CPT, how much does P(Loss of Control = Yes) decrease? This quantifies the Return on 

Investment (ROI) for safety measures. 
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V. Data-Driven Mitigation Strategies Derived from the BN Model 

The BN model moves risk mitigation from qualitative guesswork to quantitative strategy. The following strategies 

are prioritized based on their potential impact on the posterior probabilities of the output nodes. 

Strategy 1: Mandate Hybrid Multi-Modal DAA Systems. 

• BN Insight: The DAA Performance node is a critical barrier against Near-Miss and Collision. Its 

probability of failure increases significantly under adverse Weather Conditions. 

• Action: Regulatory standards should mandate, and operators should invest in, DAA systems that fuse 

data from cooperative (ADS-B In, Remote ID) and non-cooperative (radar, vision-based, acoustic) 

sensors. Machine learning-based fusion algorithms can compensate for the weakness of any single sensor 

modality (Zeng et al., 2021; Lin et al., 2023). 

• Expected BN Outcome: The conditional probabilities P(DAA = Failed | Weather = Adverse) and 

P(DAA = Failed | Technical Reliability = Medium) are drastically reduced, leading to a direct and 

significant decrease in P(Mid-Air Collision = Yes). 

Strategy 2: Implement Predictive Maintenance and Redundant Systems. 

• BN Insight: The Technical Reliability node is a root cause influencing System Health, DAA 

Performance, and C2 Link Status. 

• Action: Move from scheduled to predictive maintenance using digital twins and real-time analytics of 

UAS component health data. Furthermore, design logistics UAS with critical redundancies: dual 

batteries, redundant motors and propellers, and fall-back navigation systems (e.g., vision-based 

navigation if GPS is lost). 

• Expected BN Outcome: The prior probability P(Technical Reliability = Low) is minimized. This 

strengthens all child nodes, most notably reducing P(System Health = Failed) and thus P(Loss of Control 

= Yes) and P(Ground Impact = Yes). 

Strategy 3: Develop and Deploy Quantum-Resistant Encrypted C2 Links. 

• BN Insight: The C2 Link Robustness node directly determines C2 Link Status. A vulnerable link is a 

single point of failure for both safety (Loss of Control) and security (Security Breach). 

• Action: Invest in and standardize the use of robust, encrypted, and jam-resistant C2 data links. Explore 

the use of 4G/5G networks as a redundant backup path to traditional radio frequency links. Begin 

research into quantum-resistant cryptography to future-proof the system against emerging threats 

(Strohmeier et al., 2021). 

• Expected BN Outcome: P(C2 Link Status = Lost) is dramatically reduced, directly lowering the 

probability of Loss of Control events and malicious takeover. 

Strategy 4: Institutionalize Advanced Simulation-Based Training and SMS. 

• BN Insight: The Pilot Proficiency and Organizational SMS nodes are fundamental, yet often soft, 

barriers. Human error remains a significant contributor. 

• Action: Implement mandatory, recurrent training using high-fidelity simulators that replicate edge cases 

and emergency scenarios identified as high-probability paths in the BN (e.g., DAA failure in 

high-complexity airspace). Furthermore, regulators must require a formal SMS for all commercial UAS 

operators, fostering a just culture and promoting continuous safety improvement through data collection 

and analysis (Shappell & Wiegmann, 2020; Fernandez et al., 2022). 

• Expected BN Outcome: The overall culture of safety improves, reducing errors across all operations. 

The BN can be updated with more favorable probabilities in the Pilot Proficiency and Organizational 

SMS nodes, leading to a systemic reduction in risk. 

 

VI. Conclusion and Future Work 

The integration of UAS into civil aviation logistics is inevitable, but its scale and success are not. The key 

determinant will be the ability of the ecosystem to manage risk in a demonstrably safe, secure, and efficient 

manner. This paper has argued that achieving this requires a paradigm shift from descriptive, compliance-based 

safety to predictive, evidence-based risk intelligence. 

The proposed holistic framework, centered on a Bayesian Network model, provides a powerful 

methodology for achieving this shift. By quantitatively modeling the complex interdependencies between 

regulatory, operational, technological, and human factors, the BN transforms risk management into a dynamic 

engineering discipline. It enables stakeholders to move from asking "What are the risks?" to answering more 

critical questions: "What are the precise probabilities of these risks under specific conditions?", "What are the 

most effective measures to reduce them?", and "What is the ROI of a particular safety investment?". 

The future work is clear. The academic and industrial community must collaborate to: 

1. Refine the BN Model: Populate the CPTs with extensive real-world and simulated operational data to 

enhance the model's accuracy and credibility. 

2. Develop Standardized BN Templates: Create industry-accepted BN structures for different operational 
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scenarios (e.g., urban delivery, medical transport, industrial inspection). 

3. Integrate BNs into UTM/ATM Systems: Explore how real-time BN risk assessments can be used as an 

input for dynamic airspace management and automated flight authorization. 

4. Focus on Human-AI Teaming: Deepen the modeling of the human-in-the-loop, especially as the role 

evolves from pilot to fleet manager. 

The journey towards ubiquitous urban air mobility is a marathon, not a sprint. It must be paved not with optimism 

alone, but with rigorous, analytical, and adaptable risk management. The Bayesian Network approach outlined in 

this paper offers a robust and scientifically sound path forward to ensure that the sky of the future remains a safe 

and sustainable commons for all. 

 

References 
[1]. Alam, M. M., Moh, S., & Cho, H. J. (2023). Survey on UAS Traffic Management: Advanced Concepts and Requirements for Urban 

Air Mobility. IEEE Access, 11, 32168-32194. 

[2]. Alexander, R., Benn, L., & Cohen, K. (2022). A Safety Management System (SMS) framework for UAS service providers. Journal of 

Aviation Technology and Engineering, 11(1), 5. 

[3]. Balachandran, S., Brown, M., & Feron, E. (2021). Resilience of UAS Traffic Management (UTM) to Communication Failures: A 

Bayesian Network Approach. In 2021 Integrated Communications Navigation and Surveillance Conference (ICNS) (pp. 1-10). IEEE. 

[4]. Clothier, R. A., & Walker, R. A. (2019). The safety risk management of unmanned aircraft systems. In Handbook of Unmanned Aerial 

Vehicles (pp. 2229-2283). Springer, Cham. 

[5]. Clothier, R. A., Williams, B. P., & Fulton, N. L. (2021). A risk-based approach to the regulation of unmanned aircraft systems. Journal 

of Air Transport Management, 90, 101942. 

[6]. Cohen, A. P., Shaheen, S. A., & Farrar, E. M. (2019). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. 

IEEE Transactions on Intelligent Transportation Systems, 22(9), 5474-5485. 

[7]. EASA. (2021). Study on the societal acceptance of Urban Air Mobility in Europe. European Union Aviation Safety Agency. Cologne, 

Germany. 

[8]. EASA. (2023). Acceptable Means of Compliance (AMC) and Guidance Material (GM) to the U-space Regulation. Amendment 1. 

[9]. Eurocontrol. (2023). U-space and ATM Integration: A Concept of Operations (CONOPS). Eurocontrol, Brussels, Belgium. 

[10]. FAA. (2023). Remote Identification of Unmanned Aircraft. Federal Aviation Administration, Final Rule. FAA-2021-0035. 

[11]. Fernandez, R. A. S., et al. (2022). Human factors in UAS traffic management: A review. Applied Ergonomics, 98, 103574. 

[12]. Figliozzi, M., & Jennings, D. (2020). Autonomous delivery vehicles and their potential impact on urban freight. Transportation 

Research Part C: Emerging Technologies, 115, 102613. 

[13]. Fu, Y., et al. (2023). A Bayesian network for dynamic risk assessment of unmanned aircraft operations over moving crowds. 

Reliability Engineering & System Safety, 230, 108956. 

[14]. Ghasri, M., & Khisty, C. J. (2022). Public perception and acceptance of drones: A comprehensive review. Technology in Society, 71, 

102128. 

[15]. Hayhurst, K. J., et al. (2020). Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems. 

NASA/TM–20205006668. 

[16]. Jeong, H., et al. (2022). A distributed conflict resolution algorithm for unmanned aircraft system traffic management. Aerospace 

Science and Technology, 120, 107256. 

[17]. Johnson, M., et al. (2020). Concepts of Integration for Unmanned Aircraft Systems into the National Airspace System. 

NASA/TM-20205003759. 

[18]. JARUS. (2022). JARUS Guidelines on Specific Operations Risk Assessment (SORA). Edition 3.1. 

[19]. Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature review. Transportation 

Research Interdisciplinary Perspectives, 4, 100088. 

[20]. Kopardekar, P., et al. (2019). Unmanned Aircraft System Traffic Management (UTM) Concept of Operations. AIAA Aviation Forum, 

Dallas, TX. 

[21]. Lin, C. E., et al. (2023). A Deep Learning-Based Multi-Sensor Fusion Framework for Detect-and-Avoid in Unmanned Aerial Vehicles. 

IEEE Transactions on Intelligent Transportation Systems, 24(5), 5182-5194. 

[22]. Lyu, Y., et al. (2021). A Bayesian network-based approach for ground risk assessment of unmanned aircraft systems. Risk Analysis, 

41(5), 710-725. 

[23]. Lyu, Y., et al. (2023). Enhancing the Specific Operations Risk Assessment (SORA) for Urban Unmanned Aircraft System Operations. 

Aerospace, 10(2), 123. 

[24]. McClean, J., et al. (2021). The changing role of the remote pilot: Challenges and opportunities. International Journal of 

Human-Computer Interaction, 37(5), 431-443. 

[25]. Musiani, D., et al. (2023). Acoustic-based detection and tracking of unmanned aerial vehicles: A review. The Journal of the Acoustical 

Society of America, 153(1), 458-471. 

[26]. Oseguera, M., & Rotea, M. A. (2022). A Systems Engineering Approach to the Development of a UAS Traffic Management System. 

Systems Engineering, 25(4), 315-331. 

[27]. Park, J., & Kim, S. (2020). Optimal routing and scheduling for electric unmanned aerial vehicle systems with recharging constraints. 

Applied Energy, 276, 115484. 

[28]. Pongsakornsathien, N., et al. (2021). Performance requirements for enabling UAS integration in controlled airspace. Journal of Air 

Transportation, 29(3), 107-118. 

[29]. RTCA. (2022). *DO-365B, Minimum Operational Performance Standards (MOPS) for Detect and Avoid Systems*. RTCA, Inc., 

Washington, D.C. 

[30]. Shappell, S., & Wiegmann, D. (2020). Applying the Human Factors Analysis and Classification System (HFACS) to unmanned 

aircraft system accidents. The International Journal of Aerospace Psychology, 30(1-2), 1-14. 

[31]. Strohmeier, M., et al. (2021). Towards cybersecurity in U-space: A threat analysis for unmanned aerial vehicles. IEEE Access, 9, 

89127-89149. 

[32]. Sunil, E., et al. (2020). A concept for resilient autonomous UAS traffic management (UTM) inspired by ATM. In 2020 AIAA Aviation 



A Holistic Framework for Unmanned Aircraft System Traffic Risk Management in Civil .. 

www.irjes.com                                                                                       103 | Page 

Forum. 

[33]. Tanguy, A., et al. (2020). A Bayesian network for the safety assessment of air traffic management systems. Safety Science, 121, 

499-511. 

[34]. Wang, L., et al. (2021). A review of path planning algorithms for unmanned aerial vehicles in complex environments. Journal of 

Intelligent & Robotic Systems, 103(3), 1-24. 

[35]. Wang, Y., et al. (2022). Vision-based detect-and-avoid for small unmanned aircraft systems: A review. Drones, 6(4), 91. 

[36]. Wei, P., & Cheng, C. (2023). A Dynamic Geofence Configuration Strategy for Urban Air Mobility Operations. In AIAA AVIATION 

2023 Forum (p. 3271). 

[37]. Wilson, D., et al. (2019). Bayesian network analysis of aviation accident data. Journal of Air Transport Management, 75, 95-105. 

[38]. Xu, Y., & Prinz, T. (2024). Machine Learning for Predictive Maintenance in Unmanned Aerial Vehicles: A Systematic Literature 

Review. Drones, 8(1), 25. 

[39]. Zeng, Y., et al. (2021). A Compact Radar System for Small UAV Sense-and-Avoid Applications. IEEE Transactions on Aerospace and 

Electronic Systems, 57(3), 1445-1457. 

[40]. Zhang, B., & Liu, W. (2022). Cooperative and Non-Cooperative Sense-and-Avoid Technologies for Unmanned Aircraft Systems: A 

Review. Sensors, 22(10), 3725. 

[41]. Zhou, J., et al. (2022). Reliability modeling of UAS sense-and-avoid systems using dynamic Bayesian networks. Proceedings of the 

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(5), 847-859. 

[42]. Zorbas, D., et al. (2023). Communication and Networking Technologies for Urban Air Mobility: A Comprehensive Survey. IEEE 

Communications Surveys & Tutorials, 25(2), 1194-1230. 

 


