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Abstract 

This research introduces a novel numerical method for solving quadratic Riccati differential equations using a 

block hybrid method based on power series. By applying a collocation strategy with power series, we develop a 

computational approach that offers effective approximation of solutions to this category of nonlinear differential 

equations. The proposed method is optimized to enhance both accuracy and stability, striking a balance between 

computational efficiency and precision. Through comprehensive stability analysis, we establish that the method 

is zero-stable and convergent, making it suitable for solving Riccati equations under various initial conditions 

and parameter settings. Numerical tests confirm the method's reliability by comparing its results with existing 

methods, demonstrating its potential as a dependable tool for solving nonlinear differential equations in fields 

such as applied mathematics and engineering. 

Keywords: Quadratic Riccati Differential Equations(QRDEs), Block Method, Multistage Variational Iteration 

Method (MVIM), Differential Transform Method (DTM), Non-Standard Finite Difference Method (NSFDM). 
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I. Introduction 

Quadratic Riccati Differential Equations (QRDEs), initially explored by Count Jacopo Francesco 

Riccati, are a class of nonlinear ordinary differential equations widely applied in numerous disciplines, 

including engineering, finance, and network analysis (Riaz et al., 2021). These equations play a crucial role in 

areas that deal with stochastic processes, optimal control strategies, and diffusion phenomena. Their relevance 

extends to applications such as financial modeling, network design, and stochastic system realization 

(Baghchehjoughi et al., 2014; Nasr Al-Din, 2020b). Furthermore, QRDEs serve as effective models for 

representing complex physical systems like mass-spring arrangements, chemical kinetics, and pendulum motion. 

Their adaptability makes them essential tools in fields such as mathematical physics, control systems, and 

differential geometry for analyzing and interpreting real-world dynamics (Riaz et al., 2015; Vahidi and Didgar, 

2018). 

The Variational Iteration Method (VIM) and its enhanced form, the Multistage Variational Iteration 

Method (MVIM), have proven to be efficient techniques for solving Quadratic Riccati Differential Equations 

(QRDEs) by utilizing iterative correction processes to reach accurate solutions (Batiha, 2015). VIM operates 

based on an initial approximation and a linearization assumption, progressively improving the solution through a 

correction functional—making it effective for nonlinear differential equations such as QRDEs. MVIM builds 

upon this by introducing multiple stages of iteration, significantly enhancing both the accuracy and the rate of 

convergence (Hashim et al., 2016; Ghomanjani and Shateyi, 2020). This staged approach enables MVIM to 

handle the complexities of QRDEs more efficiently, providing refined results through repeated approximations. 

According to findings by Ghomanjani and Shateyi (2020), MVIM delivers superior precision compared to 

conventional VIM, highlighting its robustness in addressing a broad spectrum of nonlinear differential problems. 

The Differential Transform Method (DTM) and the Non-Standard Finite Difference Method (NSFDM) 

offer alternative strategies for addressing Quadratic Riccati Differential Equations (QRDEs). DTM streamlines 

the problem-solving process by transforming differential equations into algebraic series, enabling a more 

manageable analysis of complex systems—an approach particularly beneficial in scientific and engineering 

contexts involving QRDEs (Sunday, 2017; Kamoh et al., 2020). In contrast, NSFDM introduces greater 

adaptability in numerical computation by employing unconventional finite difference schemes that utilize non-

uniform grids and variable step sizes, thereby providing a closer representation of the actual behavior of the 

underlying differential equations. Riaz (2015) highlighted the effectiveness of NSFDM in QRDE applications 

by employing non-local approximations, which contribute to improved accuracy in numerical solutions. 

The Adomian Decomposition Method (ADM) serves as an effective analytical technique for solving 

Quadratic Riccati Differential Equations (QRDEs) by breaking down the solution into a series of simpler 

subcomponents, often expressed in terms of a power series (Nasr Al-Din, 2020b; Agbata et al., 2021). Through 
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its iterative decomposition strategy, ADM facilitates the resolution of complex nonlinear equations like QRDEs, 

making it widely adopted in disciplines that demand high levels of accuracy and stability. Research by Man et 

al. (2019) and Agbata et al. (2022) demonstrates ADM’s capability in tackling such problems, while ongoing 

efforts, as noted by Wenjin and Yanni (2020), aim to enhance its precision and computational robustness. In 

response to existing limitations, this study proposes a novel approach built on power series functions, designed 

to boost computational efficiency, improve accuracy, and accelerate convergence in solving QRDEs 

(Ghomanjani and Shateyi, 2020). 

 

II. Mathematical Formulation of the new Method 

A novel numerical method were derived by estimating the solution expressed using power series as basis 

functions is given 
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is consider, where  r and s  are the numbers of collocation and interpolation points respectively.  

Assume an approximate solution to equation (1.1) in the form of a power series of degree 10, by considering 

101=−+ sr   in equation (2.1), that is, 
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By inserting equations (2.2) and (2.3) into equation (1.1), we obtain 
10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

210 10)( tatatatatatatatatataatf ++++++++++=     (2.4) 

9

10

8

9

7

8

6

7

5

6

4

5

3

4

2

321 1098765432),( tatatatatatatatataaytf +++++++++=    (2.5) 

Now, interpolating (2.4) at point 1, =+ st sn
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By applying the Gauss elimination method to solve the system of nonlinear equations ( )1010,' =jsa j
 for the 

variable and then substituting the obtained results back into the power series basis function, we obtain a one-step 

block method with seven off-mesh points, presented in the following format 
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III. Properties of the Novel Numerical Method 

This section is dedicated to examining the fundamental properties of the novel numerical method, including its 

order, error constant, consistency, zero-stability, and region of absolute stability. 

 

3.1 Order and Error Constant  

Definition 3.1: Order and Error Constant 

The linear operator associated with the new method is defined as follows 
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Assuming that ( )y t is sufficiently differentiable, we express the terms in (2.1) as a Taylor series expansion 

around the point t , yielding the following expression: 
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By applying Definition 3.1 to the new method, the order of the method is determined to be 
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3.2 Consistency 

As stated by Sunday (2017), the new method is consistent because it has a uniform order of 10. 

3.3 Zero Stability 

Definition 3.2 

A new method is said to be zero-stable if the roots , 1, 2,...,sz s n= of the first characteristic polynomial ( )z , 

defined by 
(0)( ) detz zA E  = −            (3.2) 

Satisfies 1sz   and every root with 1sz =  has multiplicity not exceeding the order of the differential equation 

as 0h → . Moreover, as 0h → , ( ) ( 1)rz z z  −= − ,  where   is the order of the differential equation, r  is 

the order of the matrices (0)A and E . The main role of zero stability is to control the error propagation during 

the integration process (Sunday, 2017). By applying Definition 3.2 to the new method, the first characteristic 

polynomial is given by 
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Thus, solving for z in  

( ) 018 =−zz            (3.3) 

Gives 087654321 ======== zzzzzzzz  and 19 =z . Therefore, the new method is zero-stable. 

3.4 Convergence  

Theorem 3.1: 

For a new method to achieve convergence, it must meet the essential criteria of both consistency and zero-

stability (Kamoh et al., 2020). According to Theorem 3.1, the new method is considered convergent as it 

satisfies both of these condition. 

3.5 Region of Absolute Stability 

Definition 3.3:  

Region of absolute stability is a region in the complex z  plane, where z h= . It is defined as those values of 

z  such that the numerical solutions of yy −='  satisfy 0jy as j→ →  for any initial condition. 

To determine the regions of absolute stability for the computational method, a technique was used that 

eliminates the need for computing polynomial roots or solving simultaneous inequalities. This approach is 

known as the Boundary Locus Method (Kamoh et al., 2020). By applying Definition 3.3 to the Boundary Locus 

Method, we obtain the stability polynomial for the new method as: 
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The region of absolute stability for the new method is represented in Figure 3.1 as follows

 
Figure 3.1:Illustrating the region of absolute stability 

 

IV. Numerical Implementation of the Novel Numerical Method 

We will apply the new method to several modeled Quadratic Riccati Differential Equations (QREs) of the form 

(1.1), as shown below. The results are then compared with those from Sunday (2017), File and Aga (2016), and 

Sunday and Philip (2018). The following acronyms will be used throughout the tables and figures. 

Notations Meaning  

t  Point of Evaluation for time 

ES Exact Solution 

CS Computed Solution 

ENM Absolute Error in New Method 

AES17 Absolute Error in Sunday, (2017) 

EFA16 Absolute error in Fileand Aga, (2016) 

ESP18 Absolute error in Sunday and Philip,(2018). 

 

Problem 4.1 

The nonlinear Quadratic Riccati Differential Equations considered by Sunday (2017) and File and Aga (2016) 

are of the form 

1)0(),(
1

1
)(' 2 =−+

+
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t
ty         (4.1) 

were selected, with their exact solutions given by 

t
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1
)(            (4.2)
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Problem 4.2 

This study considers the nonlinear Quadratic Riccati Differential Equations as presented in Sunday (2017) and 

Sunday and Philip (2018), given as 

0)0(,1)()(' 2 =−= ytyty          (4.3) 

with exact solution as, 

)tanh()( tty −=           (4.4) 

Problem 4.3 

This study considers the nonlinear Quadratic Riccati Differential Equations as shown in Sunday, (2017), Sunday 

and Philip, (2018) 

0)0(),(1)(' 2 =−= ytyty          (4.5) 

with exact solution is given by, 

1

1
)(

2

2

+

−
=

t

t

e

e
ty            (4.6) 

 

Problem 4.4 

This study considers the nonlinear Quadratic Riccati Differential Equations as shown in Sunday, (2017), Sunday 

and Philip, (2018) 

0)0(),()(310)(' 2 =−+= ytytyty         (4.7) 

whose exact solution is given by, 

t

t

e

e
ty

7

7

25

14
2)(

+
+−=           (4.8) 

Table 4.1: Numerical Results for Problem 4.1 Compared with Sunday (2017) and File and Aga (2016) 
t ES CS ENM AES17 AEFA16 

0.100 0.90909090909090909091 0.90909090909090909090 1.0000e-20 2.2921e-12 3.8296e-07 

0.200 0.83333333333333333333 0.83333333333333333338 5.0000e-20 3.1139e-12 3.8296e-07 

0.300 0.76923076923076923077 0.76923076923076923079 2.000e-20 3.3764e-12 5.7951e-07 

0.400 0.71428571428571428571 0.71428571428571428574 3.0000e-20 3.4242e-12 6.8133e-07 

0.500 0.66666666666666666667 0.66666666666666666664 3.0000e-20 3.3944e-12 7.3394e-07 

0.600 0.62500000000000000000 0.62500000000000000002 2.0000e-20 3.3436e-12 7.6091e-07 

0.700 0.58823529411764705882 0.58823529411764705886 4.0000e-20 3.2949e-12 7.7483e-07 

0.800 0.55555555555555555556 0.55555555555555555559 3.0000e-20 3.2574e-12 7.8257e-07 

0.900 0.52631578947368421053 0.52631578947368421051 2.0000e-20 3.2344e-12 7.8799e-07 

1.000 0.50000000000000000000 0.50000000000000000003 3.0000e-20 3.2265e-12 7.9326e-07 

 

 
Figure 4.1: Graphical Representation of Table 4.1 
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Table 4.2: Numerical Results for Problem 4.2 Compared with Sunday (2017) and Sunday and Philip (2018) 
t ES CS ENM AES17 AESP18 

0.100 -0.09966799462495581712 -0.09966799462495581590 1.2200e-18 1.1477e-14 6.9389e-17 

0.200 -0.19737532022490400074 -0.19737532022490399904 1.7000e-18 6.7141e-14 8.3267e-17 

0.300 -0.29131261245159090582 -0.29131261245159090455 1.2700e-18 1.8341e-13 0.0000e00 

0.400 -0.37994896225522488527 -0.37994896225522488492 3.5000e-19 3.3856e-13 2.2205e-16 

0.500 -0.46211715726000975850 -0.46211715726000975896 4.6000e-19 4.8611e-13 1.1102e-16 

0.600 -0.53704956699803528586 -0.53704956699803528666 8.0000e-19 5.7987e-13 2.2205e-16 

0.700 -0.60436777711716349631 -0.60436777711716349702 7.1000e-19 5.9475e-13 2.2205e-16 

0.800 -0.66403677026784896368 -0.66403677026784896409 4.1000e-19 5.3291e-13 5.5512e-16 

0.900 -0.71629787019902442081 -0.71629787019902442090 9.0000e-20 4.1600e-13 4.4409e-16 

1.000 -0.76159415595576488812 -0.76159415595576488810 2.0000e-20 2.7445e-13 2.2205e-16 

 

 
Figure 4.2: Graphical Representation of Table 4.2 

 

Table 4.3: Numerical Results for Problem 4.3 Compared with Sunday, (2017), Sunday and Philip, (2018) 
t ES CS ENM AES17 AESP18 

0.100 0.09966799462495581711 0.09966799462495581590 1.2100e-18 1.1491e-14 9.7145e-17 

0.200 0.19737532022490400073 0.19737532022490399904 1.6900e-18 6.7169e-14 8.3267e-17 

0.300 0.29131261245159090582 0.29131261245159090455 1.2700e-18 1.8335e-13 0.0000e+00 

0.400 0.37994896225522488527 0.37994896225522488492 3.5000e-19 3.3862e-13 2.2205e-16 

0.500 0.46211715726000975851 0.46211715726000975896 4.5000e-19 4.8611e-13 2.2205e-16 

0.600 0.53704956699803528586 0.53704956699803528666 8.0000e-19 5.7987e-13 1.1102e-16 

0.700 0.60436777711716349631 0.60436777711716349702 7.1000e-19 5.9486e-13 3.3307e-16 

0.800 0.66403677026784896369 0.66403677026784896409 4.0000e-19 5.3279e-13 5.5511e-16 

0.900 0.71629787019902442081 0.71629787019902442090 9.0000e-20 4.1611e-13 5.5511e-16 

1.000 0.76159415595576488812 0.76159415595576488810 2.0000e-20 2.7456e-13 3.3307e-16 
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Figure 4.3: Graphical Representation of Table 4.3 

 

Table 4.4: Numerical Results for Problem 4.4 Compared with Sunday (2017) and File and Aga (2016) 
t ES CS ENM AES17 AESP18 

0.100 1.12295995501998517310 1.12295995502210170750 2.11653e-12 2.82693e-09 1.46347e-09 

0.200 2.33036366723934260660 2.33036366723771642140 1.62619e-12 5.89943e-09 2.99223e-09 

0.300 3.35929859139218860340 3.35929859139349077430 1.30217e-12 6.83092e-08 3.49315e-08 

0.400 4.07625619989394993700 4.07625619989411747890 1.67542e-13 1.49912e-07 7.66512e-08 

0.500 4.50864023794231405830 4.50864023794228193720 3.21211e-14 1.83945e-07 9.40192e-08 

0.600 4.74705986375186756050 4.74705986375192281450 5.52540e-14 1.65588e-07 8.46132e-08 

0.700 4.87206646548954668230 4.87206646548958852320 4.18409e-14 1.24703e-07 6.37095e-08 

0.800 4.93588015111826406050 4.93588015111828342610 1.93656e-14 8.43126e-08 4.30686e-08 

0.900 4.96801151790818190370 4.96801151790819011510 8.21140e-15 5.32397e-08 2.71935e-08 

1.000 4.98407836223863766150 4.98407836223864126670 3.60520e-15 3.21259e-08 1.64080e-08 
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Figure 4.4: Graphical Representation of Table 4.4 

 

V. Discussion of Results 

The new method is developed by approximating the solution of a nonlinear Quadratic Riccati 

Differential Equation using a power series of degree 10, with interpolation and collocation applied at selected 

mesh and off-mesh points. By substituting the series and its derivative into the differential equation, a system of 

nonlinear equations is formed and solved using Gaussian elimination, leading to a one-step block method with 

seven off-mesh points. The method is analytically shown to possess a uniform order of 10, making it consistent 

and highly accurate. Further analysis confirms zero-stability, and by satisfying both consistency and zero-

stability, the method is proven to be convergent. Its region of absolute stability is determined using the 

Boundary Locus Method, demonstrating the method’s reliability for solving stiff and nonlinear problems. 

The results from the comparison of the new method with previous methods for solving Quadratic 

Riccati Differential Equations (QREs) demonstrate its superior accuracy and efficiency. In Problem 4.1, the new 

method shows almost zero error at most time points, outperforming the solutions from Sunday (2017) and File 

and Aga (2016), which exhibit notably larger errors. This trend is clearly visualized in Figure 4.1, where the 

new method's solution closely follows the exact solution, while the previous methods show larger deviations. 

Problem 4.2 further illustrates the effectiveness of the new method. The error (ENM) values for the 

new method remain significantly lower than those from Sunday (2017) and Sunday and Philip (2018), 

reinforcing its superior performance. At all time points, the new method maintains near-zero errors, while the 

other methods experience relatively larger errors. The graphical representation in Figure 4.2 further highlights 

these differences, showing the new method's stability and accuracy over time. 

In Problem 4.3, the new method continues to outperform the previous methods. Its error remains close 

to zero, indicating its high precision in approximating the exact solution. The results for Sunday (2017) and 

Sunday and Philip (2018) show larger errors at various time points, with the new method providing a more 

reliable solution. The trend is again confirmed in Figure 4.3, where the new method closely follows the exact 

solution, emphasizing its accuracy and robustness. 

Finally, Problem 4.4 consolidates the findings, with the new method demonstrating consistently lower 

errors than the previous methods from Sunday (2017) and File and Aga (2016). The graphical analysis in Figure 

4.4 further supports these conclusions, visually confirming the new method's superior accuracy. Overall, the 

results across all four problems clearly show that the new method is more accurate and stable than the existing 

methods, making it a reliable tool for solving nonlinear QREs. 
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