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Abstract: We analyze visibility networks constructed from signals captured from functional Near-Infrared 

Spectroscopy Data Acquisition and Pre-processing technology (fNIRS) making use of properties of network 

theory with the aim to characterize the network properties of fNIRS visibility networks. The fNIRS technology is 

used to capture the brain activity of dyads of two persons by measuring the oxyhemoglobin (HbO) level during a 

task called “MapTask”. Our approach consists in three consecutive steps: (i) firstly, we employe a sliding 

window technique to segment fNIRS signals; (ii) secondly, we convert the HbO signals in each sliding window 

to visibility networks; (iii) thirdly, we employ network properties such as diameter, clustering coefficient, 

assortativity, transitivity and density across different cerebral time windows. Furthermore, we investigate the 

degree distribution of the nodes in the networks and it is observed that they follow a power- law distribution as 

the length of the signal increased suggesting scale- free characteristics. 
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I. INTRODUCTION 

Network theory is lastly ranked as a powerful tool in the identification and prediction of the different 

collective phenomena in various complex systems (Boccaletti et al. 2006; Arenas et al. 2008; Barrat et al. 2008; 

Halvin et al. 2012; Chen et al. 2015; Newman, 2018). In previous research papers (Dhamo et al. 2024a; Dhamo 

et al. 2024b) we have addressed the dynamic phenomena of synchronization in the fNIRS visibility networks, 

whereas here we try to explore the properties of the visibility networks. The network properties like diameter, 

clustering coefficient, assortativity, transitivity and density have been widely used to investigate and analyze 

complex phenomena after modelling them as networks (Estrada and Knight, 2018; Newman, 2018).  

Visibility network, firstly proposed by (Lacasa et al. 2008) is an important technique to convert a time 

series into a network. In the literature, there are two different approaches related to the construction of the 

visibility network: (i) natural visibility network (Lacasa et al. 2008); and (ii) horizontal visibility network 

(Luque et al. 2009), which is a simplified version of the first mentioned (i). Both of them, have the same main 

characteristics: (i) the visibility network is connected; (ii) undirected; (iii) invariant from the affine 

transformation of the time series data; and (iv) it can be used in all kind of time series data (Lacasa et al. 2008; 

Luque et al. 2009; Lacasa et al. 2012; Lacasa et al. 2015). Their application in the neuroscience is focused to 

EEG data (Mira- Iglesias et al. 2016, Bhaduri& Ghosh 2016), fMRI data (Sannino et al. 2017) and fNIRS data 

(Dhamo et al. 2024a; Dhamo et al. 2024b). 

In this paper, we use visibility graphs to map fNIRS time series data into networks and explore the time 

series from the network theory prospective. fNIRS is a technology used to measure brain activity through the 

levels of the HbO captured in the head of participants following a certain experiment (Li et al. 2021). The HbO 

signals are registered by the optods positioned in left and right hemispheres of the prefrontal cortexes (PFC) of 

the participants in the experiment. Recent publications in this area have addressed their importance in estimating 

the brain synchronization of individuals when collaborating to complete a particular task (Li et al. 2021; Wang 

et al. 2022). In this paper, we follow a different approach. Firstly, we segment the fNIRS time series during a 

particular time of the experiment duration and convert visibility networks. In addition, we compute the diameter, 

density, clustering coefficient, transitivity, modularity, assortativityand compare the results for different sliding 

windows. Furthermore, we consider increasing sliding windows for the time series, from 1 minute up to 20 

minutes of experiment duration and investigate the node degree distribution. Experimental results suggest that 

the degree distribution follows the power law distribution with the increasing of experiment time duration 

considered.   

The rest of the paper is organized as follows. In the second section we present the network theory 

background focusing in the concepts of diameter, density, clustering coefficient, transitivity, modularity and 

assortativitythat we will use in the following experimental section. Furthermore, we introduce the visibility 

graph approach. The third section describes the generation of the data and provides the experimental results 
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obtained from our analysis. Conclusions summaries all the word conducted and results obtained from our 

investigation.  

 

II. MATHEMATICAL BACKGROUND 

 

2.1Fundamentals in networks 

The mathematical notations related to graph theory are a summary of notations presented in numerous 

number of scientific papers in this field (Estrada and Knight, 2018; Newman, 2018). Throughout this paper, we 

will use the notations graph and network as a synonym of each- other. Here, we define a network as a pair 𝐺 =
(𝑉, 𝐸), where 𝑉 is called the vertex set and 𝐸 refers to the edge set. This study is limited to undirected networks 

where E is a symmetric set and unweighted networks. A network is uniquely defined by its adjacency matrix 𝐴 

defined as 𝐴: aij = {
1           (i, j) ∈ E
0           (i, j) ∉ E

. 𝐴is a binary matrix in case of unweighted networks. The degree of a node 

in a network is the number of edges incident to that particular node. In addition, the degree distribution refers to 

the statistical representation, which gives the relative frequency of each degree value within the network. In 

other words, the degree distribution 𝑃(𝑘) is the probability that a randomly selected node is incident to exactly 

𝑘 edges.In the literature,there exist various network models based on the degree distribution: (i) regular graphs 

which degree distribution is defined as 𝑃(𝑑) = 𝛿(𝑑 − 𝑘) (ii) random networks, whose nodes degree distribution 

follows the Poisson distribution 𝑃(𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!
 and they are referred as Erdós–Rényi networks (iii) scale- free 

networks, whose node degree distribution follows the power- law distribution 𝑃(𝑘) ∝ 𝑘−𝛾 , where 𝛾  is the 

power- law exponents. In case of, scale- free networks 2 ≤ 𝛾 ≤ 3. 

Let’s consider a network 𝐺 = (𝑉, 𝐸). A path in the network is a sequence of edges, which joins a 

sequence of distinct vertices in the network. In addition, the shortest path between two vertices is defined as the 

path between that particular vertices which has the minimum number of edges and we refer as 𝑑(𝑖, 𝑗) . 

Furthermore, the diameter of 𝐺 is the length of the longest shortest path between any pair of nodes: 

𝑑𝑖𝑎𝑚(𝐺) = max
𝑖,𝑗∈𝑉

𝑑(𝑖, 𝑗)                                                    (1) 

Density measures how many edges exist in the network compared to the maximum number of edges: 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐺) =
2|𝐸|

|𝑉|(|𝑉| − 1)
                                                  (2) 

Density indicates how ‘connected’ a network is, with values range from 0, indicating a disconnected 

network to 1, which indicates a complete network.  

Furthermore, local clustering coefficient of a node 𝑖 in 𝐺 quantifies how close the neighbors of a vertex 

are to being a clique (complete graph): 

𝐶𝑖 =
2𝑒𝑖

𝑘𝑖(𝑘𝑖 − 1)
                                            (3) 

where𝑒𝑖 refers to edge 𝑖 and 𝑘𝑖 refers to the degree of node 𝑖. 

Whereas, the average clustering coefficient evaluates the degree to which nodes in a network tend to 

cluster together: 

𝐶 =
1

|𝑉|
∑ 𝐶𝑖

𝑖∈𝑉

                                 (4) 

Lastly, the transitivity, also called the global clustering coefficient measures the overall level of 

clustering in the network: 

𝑇 =
3 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
               (5) 

Modularity is defined as the number of edges falling within groups minus the expected number in an 

equivalent network with edges placed at random (Newman et al. 2006): 
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𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖 , 𝑐𝑗)

𝑖,𝑗

                                              (6) 

where𝑚 is the total number of edges, 𝑐𝑖 is the community assignment of node 𝑖 and 𝛿(𝑐𝑖 , 𝑐𝑗) = 1, if 

node 𝑖 dhe 𝑗 belongs to the same community and 0 otherwise. Higher values of 𝑄 indicates stronger community 

structure.  

Degree assortativity measures the correlation between the degrees of connected nodes: 

𝑟 =
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝑖,𝑗 𝑘𝑖𝑘𝑗

∑ (𝑘𝑖𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
)𝑖,𝑗 𝑘𝑖𝑘𝑗

                                    (7) 

where 𝑟 > 0 indicates that network is assortative, which means that high- degree nodes tend to connect 

to high- degree nodes and same for low- degree nodes; 𝑟 < 0 indicates that network is dissassortative, which 

means that high- degree nodes tend to connect to low- degree nodes; and 𝑟 = 0 indicates that there is no degree 

correlation in the network. 

A network 𝐺 exhibits the small- world property if it has small value of the average shortest path length 

and high value of the clustering coefficient (Estrada and Knight, 2018; Newman, 2018). 

2.2 Visibility network 

The visibility network approach, which converts a time series into a network,was firstly proposed by 

(Zhang and Small, 2006) and its disadvantages is that its application is limited only to pseudoperiodic time 

series. Two years later, (Lacasa et al. 2008) proposed a new approach for visibility network, which can be 

applied to every kind of time series data. Let’s consider a time series with 𝑁data measured at times𝑡𝑖, 𝑖 =
1, 2 , … , 𝑁 with values 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑁 and consecutive time points(𝑡𝑖 , 𝑥𝑖), (𝑡𝑘, 𝑥𝑘) and (𝑡𝑗, 𝑥𝑗). Time points 

(𝑡𝑖, 𝑥𝑖) and (𝑡𝑗, 𝑥𝑗)are visible and consequently will become two connected nodes in the visibility graph if for 

any point(𝑡𝑘, 𝑥𝑘)between them, they fulfill the following inequation (8): 

𝑥𝑘 < 𝑥𝑗 + (𝑥𝑖 − 𝑥𝑗)
𝑡𝑗 − 𝑡𝑘

𝑡𝑗 − 𝑡𝑖

                                                               (8) 

The construction of the natural visibility graph is illustrated schematically in figure 1 given a time 

series with 𝑁=20. 

 

Fig. 1. Natural visibility network 

 

One year later (Luque et al. 2009) proposed a simplified version of the natural visibility network, called 

horizontal visibility network, which is defined as follows. Let’s consider a time series with 𝑁 data measured at 
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times 𝑡𝑖 , 𝑖 = 1, 2 , … , 𝑁 with values 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑁  and consecutive time points (𝑡𝑖 , 𝑥𝑖), (𝑡𝑘, 𝑥𝑘) and (𝑡𝑗 , 𝑥𝑗). 

Time points (𝑡𝑖, 𝑥𝑖) and (𝑡𝑗, 𝑥𝑗) are visible and consequently will become two connected nodes in the visibility 

graph if for any point (𝑡𝑘, 𝑥𝑘) between them, they fulfill the following inequation (9): 

𝑥𝑖 , 𝑥𝑗 > 𝑥𝑘 ,         ∀𝑛: 𝑖 < 𝑛 < 𝑗                             (9) 

The horizontal visibility graph presents a subgraph of the natural visibility graph. Figure 2 illustrates 

the construction of the horizontal visibility graph from the same time series as presented in figure 1. 

 

Fig. 2. Horizontal visibility network 

 

III. EXPERIMENTAL RESULTS 

3.1 Experiment setup 

A collaborative task known as “MapTask” was assigned to two participants, thereby forming a dyad. The 

guiding participant (pA) was presented with 35 icons and a predefined path displayed on their screen, while the 

following participant (pB) was shown the same set of icons but without the path. The objective of the 

experiment was that, by the conclusion of the task, pB would reproduce the same path visible on pA’s screen by 

using the keyboard arrows, based on the verbal instructions provided by pA. 

Brain activity was recorded using Functional Near-Infrared Spectroscopy (fNIRS) with data acquisition and 

preprocessing procedures. Each participant was equipped with two optodes placed on the prefrontal cortex 

(PFC): one in the left hemisphere (hL) and the other in the right hemisphere (hR). These optodes measured both 

oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentration changes. Since HbOis considered more 

responsive to variations in cerebral blood flow compared to HbR, our analysis focused on the HbO signal 

(Wang et al., 2022). A total of 18 participants were recruited and organized into 9 dyads. For analysis, we 

considered the first five minutes of data collection at the onset of the experiment. The cooperative task 

performed at the beginning of the experiment and after completing it, is illustrated in Figure 3 and 4 

respectively. 

 
 

Fig. 3. “MapTask” view at the beginning of the experiment 
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Fig. 4. “MapTask” view at the end of the experiment. 

 

3.2 Brain network properties 

 

The HbO time series are mapped into visibility networks as described in section 2. There are two 

networks for each participant, corresponding to the signals obtained by measuring theHbO in left (lPFC) and 

right prefrontal cortex hemispheres (rPFC). For simplicity, from now on we will refer as pAhL (pAhR) the lPFC 

(rPFC) HbO signals of pA and as pBhL (pBhR) the lPFC (rPFC) HbO signals of pB. In addition, we divide the 

time series into non- overlapping segments of 5 seconds each and construct the natural visibility network for 

each sliding window. Furthermore, the network properties are computed in each network and visualized in the 

following figures. 

Figure 5 illustrates the diameter value computed for network in each sliding window.  

 

Fig. 5. Diameter for each window visibility network 

 

The plots show the evolution of the network diameter across time windows for each hemisphere of the 

guide (pA) and follower (pB) participants.In pA’s networks (pAhL, pAhR), the diameter remains relatively 

stable for most windows, followed by a noticeable increase toward the end of the task, suggesting higher 

dispersion or reduced efficiency in connectivity. For pB’s networks (pBhL, pBhR), stronger fluctuations are 

observed throughout, indicating less stable structural patterns during task execution. Overall, the results suggest 

that while both participants show an increase in diameter near the end, the follower’s networks display greater 

variability compared to the guide’s more consistent dynamics. 

Figure 6 illustrates the density value computed for network in each sliding window. The plots display 

how network density evolves across time windows for the guide (pA) and follower (pB) participants in both 

hemispheres. In the guide’s networks (pAhL, pAhR), density values remain relatively stable around 0.07, with 

small fluctuations and a slight decline toward the end, suggesting a modest reduction in connectivity.The 

follower’s left hemisphere (pBhL) exhibits more variability, with several sharp increases and decreases, 

indicating unstable structural organization during task execution.The follower’s right hemisphere (pBhR) shows 

frequent low-density fluctuations, reflecting weaker and less consistent connectivity patterns compared to the 

guide. 
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Overall, the results highlight that while the guide’s networks maintain more stable density, the 

follower’s networks demonstrate stronger variability, particularly in the left hemisphere. 

 

Fig. 6. Density for each window visibility network 

 

Figure 7 illustrates the global clustering coefficient value computed for network in each sliding window. 

 

Fig. 7. Clustering coefficient for each window visibility network 

 

The plots illustrate how the clustering coefficient changes over time windows for the guide (pA) and 

follower (pB) participants in both hemispheres. For the guide (pAhL and pAhR), clustering values remain fairly 

stable around 0.75, with moderate fluctuations, indicating consistent local interconnectedness among nodes.The 

follower’s left hemisphere (pBhL) shows slightly lower and more variable clustering coefficients compared to 

the guide, reflecting less stable local network organization.The follower’s right hemisphere (pBhR) exhibits 

smoother trends, with clustering coefficients staying close to 0.75 and fewer sharp deviations than in 

pBhL.Overall, the guide demonstrates higher stability in clustering across both hemispheres, while the 

follower’s left hemisphere shows greater variability, suggesting possible differences in local coordination during 

the task. 

Figure 8 illustrates the transitivity coefficient value computed for network in each sliding window. The 

plots present how the transitivity coefficient evolves across time windows for the guide (pA) and follower (pB) 

participants in both hemispheres.For the guide’s networks (pAhL and pAhR), transitivity remains relatively 

stable around 0.47–0.50, with moderate oscillations and a small upward trend toward the final windows. The 

follower’s left hemisphere (pBhL) shows stronger fluctuations than the guide, with values ranging between 0.41 

and 0.50, indicating more unstable local triangle formation. The follower’s right hemisphere (pBhR) exhibits the 

lowest stability overall, with multiple sharp drops near 0.40 but also a late increase toward 0.50, suggesting 

irregular clustering patterns. Overall, the guide maintains more consistent transitivity across both hemispheres, 
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whereas the follower shows higher variability, particularly in the right hemisphere, reflecting differences in 

local structural organization during the cooperative task. 

 

Fig. 8. Transitivity for each window visibility network 

 

Figure 9 illustrates the modularity coefficient value computed for network in each sliding window. 

 
Fig. 9. Transitivity for each window visibility network 

 

The plots illustrate the variation of modularity across time windows for the guide (pA) and follower 

(pB) participants in both hemispheres. In the guide’s networks (pAhL and pAhR), modularity remains fairly 

stable between 0.65 and 0.72, with a slight upward tendency toward the end, indicating strengthening of 

community structure. The follower’s left hemisphere (pBhL) shows greater fluctuations, with modularity 

dropping to around 0.55 in some windows but recovering later, suggesting unstable but adaptive community 

partitioning. The follower’s right hemisphere (pBhR) exhibits lower variability, maintaining modularity between 

0.60 and 0.70, reflecting more consistent community organization compared to pBhL.Overall, the guide 

maintains stronger and more stable modular structure, while the follower shows higher variability, particularly 

in the left hemisphere, which may reflect differences in cognitive load during the cooperative task. 

Figure 10 illustrates the assortativity coefficient value computed for network in each sliding window. 

The plots depict the evolution of the assortativity coefficient across time windows for the guide (pA) and 

follower (pB) participants in both hemispheres. In the guide’s networks (pAhL and pAhR), assortativity remains 

mostly positive, ranging between 0.1 and 0.2, with occasional peaks near 0.3, indicating a general tendency for 

nodes to connect with others of similar degree.The follower’s left hemisphere (pBhL) displays stronger 

variability, with assortativity dropping close to zero toward the end, suggesting weakened degree–degree 

correlations over time.The follower’s right hemisphere (pBhR) also shows irregular fluctuations, with multiple 

instances near zero assortativity, reflecting unstable patterns of connectivity preferences.Overall, the guide 

demonstrates more consistent assortative mixing, while the follower’s networks—particularly in the left 

hemisphere—show higher instability and reduced assortativity toward the end of the task. 
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Fig. 10. Transitivity for each window visibility network 

Table 1 summaries the average diameter, density, clustering coefficient, transitivity, modularity and assortativity 

across all time windows for all pAhL, pAhR, pBhL and pBhR participants. 

Table 1. Average network properties 
Participant Average 

Diameter 

Average 

density 

Average 

Clustering 

Coefficient 

Average 

Transitivity 

Average 

Modularity 

 

Average 

assortativity 

 

pAhL 7.2742 0.0656 0.7558 0.4958 0.6605 0.1101 
pAhR 7.2581 0.0627 0.7545 0.4818 0.6565 0.1088 
pBhL 7.3871 0.0605 0.7493 0.4560 0.6377 0.0791 
pBhR 7.3065 0.0593 0.7490 0.4560 0.6470 0.0808 

 

Lastly, we consider increasing sliding windows for the time series, from 1 minute up to 20 minutes of 

experiment duration and investigate the node degree distribution. Figure 11-13 illustrates the degree distribution 

of the visibility networks corresponding to 1, 2 , 3, 4, 10 and 20 minutes respectively. 

Across all time windows (1, 2, 3, 4, 10, and 20 minutes), the log–log plots of node degree distributions 

consistently show heavy-tailed patterns, indicative of scale-free–like behavior where most nodes have low 

degree and only a few nodes achieve high degree. In the early stages (1–2 minutes), the distributions drop off 

more steeply, suggesting a faster decay and fewer high-degree nodes. As time increases (3–4 minutes), the 

distributions begin to flatten slightly, with a broader spread of node degrees and clearer alignment with a power-

law trend. At 10 minutes, the power-law fit becomes more evident, with higher-degree nodes appearing more 

frequently and the tail extending further. By 20 minutes, the network exhibits the broadest distribution, with the 

longest tail and the highest number of hubs, confirming that as the time window grows, the network accumulates 

more links, leading to stronger scale-free characteristics and increased heterogeneity. 

 

 
Fig. 11. : Node degree distribution for 1 (left) and 2 minutes (right) visibility networks 
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Fig. 12. : Node degree distribution for 3 (left) and 4 minutes (right) visibility networks 

 

Fig. 13. : Node degree distribution for 10 (left) and 20 minutes (right) visibility networks 

Table 2 provides the estimated scaling exponent and 𝑝- value for different duration of the experiment. 

Table 2. Estimated scaling exponent and 𝒑- value for different duration of the experiment 

Participant 1 minute 2 minutes 3 minutes 4 minutes 10 minutes 

 

20 minutes 

 

Estimated 

scaling 

exponent 
4.254379 2.465897 2.402139 2.574566 2.393856 2.905879 

𝑝- value 0.9954987 0.03500376 0.03975481 0.02860772 0.04519935 0.9954987 

 

At 1 minute, the estimated scaling exponent is very high (γ ≈ 4.25), suggesting a rapid decay of the 

degree distribution where hubs are nearly absent. However, the p-value (0.995) is non-significant, indicating 

that a power-law is not a good fit at this early stage. At 2–4 minutes, the exponents drop into the range γ ≈ 2.4–

2.6, which is consistent with typical scale-free networks. Importantly, the p-values (0.035–0.028) are below 

0.05, confirming that the power-law model is statistically significant in this interval. This suggests that during 

these time windows, the network begins to show heavy-tailed degree distributions with clear hub formation. At 

10 minutes, the exponent remains close to γ ≈ 2.39, still within the scale-free range. The p-value (0.045) is just 

below 0.05, indicating marginal but still acceptable statistical support for a power-law fit. At 20 minutes, the 

exponent increases again (γ ≈ 2.91), reflecting a steeper distribution with fewer extreme hubs. However, the p-

value (0.996) indicates a poor fit, suggesting that the degree distribution at longer observation windows deviates 

from pure power-law behavior, possibly due to saturation effects or alternative heavy-tailed distributions (e.g., 

truncated power-law, log-normal). The best evidence for scale-free structure occurs between 2 and 10 minutes, 

with exponents in the critical range (2< γ < 3) and statistically significant p-values. In contrast, very short (1 

min) and very long (20 min) windows do not support a either valid power-law fit, due to insufficient 

connectivity (early) or structural saturation (late). 
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IV. CONCLUDING REMARKS 

The visibility graph approach transforms time series into complex networks, enabling the extraction of 

topological features from temporal data (Zhang and Small, 2006; Lacasa et al., 2008; Luque et al., 2009). In this 

work, HbO signals obtained from fNIRS measurements of participants engaged in the cooperative “MapTask” 

experiment were mapped into visibility networks. Network measures computed in non-overlapping 5-second 

windows revealed that the guide (pA) exhibited more stable dynamics across hemispheres, whereas the follower 

(pB) displayed greater variability, particularly in the left hemisphere, in terms of diameter, density, clustering, 

transitivity, modularity, and assortativity. Analysis of degree distributions across increasing window lengths (1–

20 minutes) demonstrated heavy-tailed patterns indicative of scale-free–like organization. Statistically 

significant power-law fits were observed between 2 and 10 minutes (γ ≈ 2.4–2.6, p < 0.05), confirming the 

emergence of hubs and scale-free connectivity. In contrast, very short (1 min) and very long (20 min) durations 

yielded non-significant fits, suggesting either insufficient connectivity or deviations from pure power-law 

behavior toward alternative heavy-tailed distributions. 
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