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Abstract: Solar radiation and temporal climatic variations are widely recognized as key drivers in the 

occurrence and spread of forest fires across the globe, with particularly pronounced impacts in ecologically 

sensitive regions such as the Ethiopian Highlands. This study investigates the role of solar radiation in 

influencing forest fire activity by exploring the correlation between Land Surface Temperature (LST) and 

observed fire events. Utilizing satellite-derived thermal datasets in conjunction with fire occurrence and severity 

data, this study aims to uncover spatiotemporal patterns that reveal how elevated temperature regimes 

contribute to the ignition, intensity, and progression of forest fires in the region. A correlational analytical 

framework is employed to assess the relationship between LST and fire severity metrics, notably the differenced 

Normalized Burn Ratio (dNBR). By quantifying these relationships, the study enhances understanding of the 

thermal dynamics underlying fire behavior. The findings are expected to support the development of predictive 

fire risk models and to inform evidence-based fire management strategies. Furthermore, the insights contribute 

to ongoing discourse on climate change adaptation, particularly in highland ecosystems vulnerable to 

increasing thermal stress and environmental degradation. 
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I. Introduction 

Remote sensing technologies have revolutionized forest fire detection by enabling efficient monitoring 

of large and inaccessible areas through the integration of Land Surface Temperature (LST) data and spectral 

indices such as the Normalized Burn Ratio (NBR) and the differenced Normalized Burn Ratio (dNBR). These 

tools allow for timely identification of active fires, assessment of burn severity, and improved understanding of 

fire dynamics across diverse landscapes. The East Benishangul-Gumuz Wildlife Protection Park is located in the 

northwestern region of Ethiopia. Spanning an area of approximately 50,381 square kilometers, this vast 

ecological landscape is situated at altitudes ranging from 1,200 to 1,500 meters above sea level. The region 

experiences annual temperatures fluctuating between 20°C and 40°C. Geographically, the park lies between 

9°17' to 12°06' North latitude and 34°04' to 37°04' East longitude. It encompasses a wide array of ecosystems 

and harbors rich biodiversity, including various vegetation types and wildlife species (Fig. 1). Climate 

variability plays a significant role in shaping fire regimes, particularly in ecologically sensitive and 

topographically complex regions such as the Ethiopian highlands. Among the various climatic drivers, solar 

radiation and its influence on land surface temperature (LST) are central to understanding vegetation 

flammability and fire susceptibility. In regions with pronounced dry seasons, increased solar radiation leads to 

reduced vegetation moisture, drying of ground fuel, and overall elevated fire risk. Temporal variations, including 

shifts in seasonal weather patterns and inter-annual climate anomalies, further exacerbate these risks by altering 

the frequency, duration, and intensity of fire-prone conditions. While these dynamics have been extensively 

studied in Mediterranean and temperate ecosystems, their specific impacts in high-altitude tropical regions like 

the Ethiopian Highlands remain understudied. 

Several remote sensing-based studies have explored the linkage between LST and wildfire activity. 

Gitas et al. (2012) emphasized the importance of incorporating thermal indicators into fire risk models, 

particularly in areas with limited ground-based data [1]. Chuvieco et al. (2006) demonstrated that satellite-

derived thermal anomalies can act as reliable early warning indicators for fire outbreaks when combined with 

vegetation indices and historical fire data [2]. These findings are supported by other research efforts, including 

Veraverbeke et al. (2014) and Sun et al. (2019), which confirmed that integrating thermal data with post-fire 

indices such as the differenced Normalized Burn Ratio (dNBR) enhances the accuracy of burn severity 

assessments across diverse landscapes. Despite these advances, a major gap remains in applying these 
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techniques to African highland ecosystems, which exhibit distinct climatic, ecological, and topographic 

characteristics [3][4]. 

The Ethiopian highlands, encompassing large swaths of forest, grassland, and agricultural mosaics, 

experience significant variations in elevation, land cover, and solar exposure. These factors influence 

microclimates and fuel conditions, making standard fire detection and assessment models less reliable without 

regional calibration. Most existing models rely on thresholds and algorithms developed for temperate or semi-

arid environments and often fail to capture the nuanced behavior of fire in high-altitude, mixed-vegetation 

systems. For example, the dNBR index, while widely used globally, requires contextual adaptation to effectively 

reflect burn severity in this region. Miller et al. (2009) and Bastarrika et al. (2011) both highlighted the 

importance of adjusting dNBR thresholds according to local biophysical variables to reduce errors in fire 

mapping and classification [5][6]. 

One particularly promising approach involves the integration of LST with terrain and temporal 

variables to produce a more holistic fire risk model. Studies conducted in varied geographic regions suggest that 

pre-fire LST anomalies, especially when sustained over dry periods, can signal increased ignition potential. In 

mountainous or highland regions, however, topographic factors such as slope, elevation, and aspect further 

influence solar radiation exposure and, by extension, the spatial variability of LST. Incorporating these variables 

into fire detection and severity models is especially crucial for the Ethiopian highlands, where terrain plays a 

pivotal role in shaping microclimates and vegetation distribution. 

This study aims to fill the existing research gap by examining the relationship between solar radiation 

represented by satellite-derived LST and forest fire dynamics in East Benishangul-Gumuz Wildlife Protection 

Park. By correlating LST with fire occurrence and severity (measured via dNBR).  Furthermore, the inclusion of 

seasonal patterns allows for the analysis of temporal variation in fire behavior, offering insights into how 

different climatic periods influence ignition and burn severity. The outcomes of this study have the potential to 

refine fire monitoring strategies in Ethiopia and contribute to the global understanding of fire ecology in 

highland environments facing increasing climate variability. 

 

II. Data and Methods 

2.1 Principles and methods 
This study employed the Land Surface Temperature (LST) that derived from the thermal infrared (TIR) bands of 

Landsat 8, specifically Band 10 or Band 11. The calculation of LST involves multiple steps, which will be 

systematically outlined in the following sections to ensure accurate results. The steps are shown below in Fig 2. 

 

Top-of-Atmosphere (TOA) Radiance 

Top-of-Atmosphere (TOA) Radiance refers to, the amount of radiative energy received by a satellite sensor per 

unit area, per unit solid angle, and per unit wavelength at the top of Earth's atmosphere [7][8]. It represents the 

raw radiance values detected by the satellite before any atmospheric corrections are applied. To calculate this 

value, we must gather the digital number (DN) of the pixel from the metadata. Then the formula to calculate 

TOA is as follows: 

                                     (1) 

where: is radiance multiplicative scaling factor (from metadata) 

 is  radiance additive scaling factor (from metadata) 

DN is digital number of the pixel 

Landsat's thermal bands (TIRS) provide digital numbers (DNs) that must be converted to radiance ( ). After we 

acquire the radiance conversion factors from Landsat 8 Band 10, we calculate the radiance.  

 

Brightness Temperature (BT) 

Brightness Temperature (BT) is the temperature of a blackbody that would emit the same amount of radiance as 

detected by a satellite sensor in a specific thermal infrared (TIR) band. It approximates the actual surface 

temperature but is influenced by atmospheric effects, surface emissivity, and sensor calibration [9]. Once we 

have the radiance, we use Planck’s equation to get the brightness temperature (BT). The formula is as follows: 

                               (2) 

where: BT is Brightness temperature in Kelvin, 

L is TOA radiance 

, = Sensor-specific thermal calibration constants. Landsat 8 band 10 ( = 774.8853 and  = 1321.0789). 

Land Surface Temperature (LST)  

LST is the efficiency of a surface in emitting thermal radiation relative to a perfect blackbody. Ranges from 0 to 

1, water (~0.99) has high emissivity, and bare soil (~0.85–0.95) has lower emissivity [10]. We need LST 
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correction because Brightness Temperature (BT) from satellites assumes a blackbody surface, which can cause 

temperature overestimation or underestimation. We can calculate by using the following equation: 

                          (3) 

where: λ is Wavelength of thermal radiation (10.9 µm for Landsat 8 band 10) 

  is 1.438 × 10⁻² mK (second Planck constant) 

ε is Land surface emissivity (depends on land cover type) 

BT is Brightness temperature 

By applying these methods, we can derive accurate thermal remote sensing products essential for environmental 

and scientific analyses [11].  

 

differenced Normalized Burn Ratio (dNBR) 

This study employed the differenced Normalized Burn Ratio (dNBR) index to extract fire-affected areas through 

spectral analysis of satellite imagery before and after fire events. dNBR leverages the spectral reflectance in the 

Near-Infrared (Band 5) and Short-Wave Infrared (Band 7) to quantify burn severity [12]. For this method, the 

Normalized Burn Ratio (NBR) is calculated independently for pre-fire and post-fire images using the formula: 

                              (4) 

The differenced Normalized Burn Ratio (dNBR) is calculated by subtracting the post-fire NBR from the pre-fire 

NBR. This yields positive values for burned areas, with higher values indicating greater burn severity, while 

unburned areas typically produce values close to zero or negative. [13]. 

 

2.2 Data collection process 

This study utilized satellite data from Landsat 8 OLI_TIRS. All datasets were acquired from the United 

States Geological Survey (USGS) through the Earth Explorer platform. Landsat 8 imagery covering the period 

from 2024 to 2024 was selected for the study area, corresponding to WRS-2 path/row 170/53. To capture 

seasonal variability, both pre-fire (wet season) and post-fire (dry season) images were collected. Upon 

acquisition, the remote sensing data underwent preprocessing procedures, including atmospheric correction, 

radiometric calibration, and geometric correction, to ensure consistency and accuracy for subsequent analysis. 

The locations of the study regions are illustrated in Fig. 1 

a                                            b 

 
Fig.1 Study regions (a)pre-fire, (b)post fire 

 

Variation of annual temporal data 

Fires in the Ethiopian highlands are more frequent during the dry season due to lower moisture levels 

in vegetation and soil. Seasonal analysis helps identify periods of heightened fire risk, enabling targeted 

interventions. For temperature analysis, we focus on maximum temperature records to assess fire risk. This 

section examines the relationship between seasonal temperature variations and fire severity by comparing 

historical temperature data with detected burned areas. Higher temperatures during the dry season typically 

increase fire severity. We analyze forest fire distribution in the Chagni area from 2016 to 2024, focusing on dry 

(January–May) and wet (June–November) seasons. Peak temperatures, occurring between March and May, 

coincide with the dry season, when fire frequency and severity are highest due to extreme dryness. In contrast, 

the lowest temperatures are observed between July and September, aligning with the wet season, when increased 

rainfall and cloud cover reduce fire risk. Temperature fluctuations range from 27°C to 40°C, with recurring 

seasonal patterns. 
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The main workflow for acquisition of Land Surface temprature (LST) data are showen in  Fig. 2. 

 

 

Fig. 2 Acquisition process of  LST data 

 

III. Data processing 

3.1 LST data processing 

To obtain the Land Surface Temprature (LST), we process the Top-of-Atmosphere (TOA) Radiance 

represents the raw radiative energy received by the satellite sensor before atmospheric corrections. Then, 

Brightness Temperature (BT) provides an estimate of the temperature of an equivalent blackbody emitting the 

same radiance observed in a specific thermal infrared (TIR) band. However, since real-world surfaces have 

varying emissivity, this estimate can be inaccurate. To refine the measurement, Land Surface Temperature (LST) 

is calculated by correcting BT for surface emissivity variations, producing a more precise representation of 

actual surface temperatures. By following these steps, we obtain a corrected, reliable estimation of Earth's 

surface temperature, essential for our temperature effect on forest fire study. 

We calculated the Land Surface Temperature (LST), and we changed the map into a color-coded heatmap for 

enhanced visualization and assessment. The results are shown below.  

 
Fig. 3 Land Surface Temperature (LST) of the study area, scaled 0 to 1, lowest to highest 

 

3.2 dNBR image processing 
For Landsat 8, the Normalized Burn Ratio (NBR) is calculated using band 5 (0.85-0.88 µm) and band 7 (2.11-

2.29 µm). NBR is calculated as: (Band5 – Band7) / (Band5 + Band7). The values before the fire range from 0.22 

to 0.58. These values are generally positive, indicating unburned vegetation. NBR values after the fire range 

from -0.28 to 0.50. Areas with negative values typically indicate burned regions. Then next, we calculate the 

dNBR value by subtracting the post-fire NBR from the pre-fire NBR. Burned areas appear brighter than the 

surrounding areas. The resulting range of the dNBR values is -0.23 to 0.57. The result is shown in Fig. 4 
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 Fire area 

Fig.4 dNBR image of the study area 

 

IV. Correlation 

4.1 Pearson correlation between dNBR and LST 

The relationship between Differenced Normalized Burn Ratio (dNBR) and Land Surface Temperature 

(LST) is crucial in understanding fire severity and post-fire landscape recovery. dNBR is a widely used remote 

sensing index that quantifies fire-induced vegetation changes by analyzing pre- and post-fire near-infrared and 

shortwave infrared reflectance. LST, derived from thermal infrared satellite data, represents the Earth's surface 

temperature and can be an indicator of fire intensity and residual heat. By conducting a correlation analysis 

between dNBR and LST, we can assess whether higher burn severity (higher dNBR values) corresponds to 

increased surface temperatures, which can provide insights into fire behavior, energy release, and ecological 

impacts. This study aims to explore the strength and significance of this relationship, helping to refine fire 

impact assessments and improve fire severity classification models. Fig. 5 shows correlation analysis between 

dNBR and LST. 

 
Fig. 5 Correlation analysis between dNBR and LST 

 

The Pearson correlation coefficient (r = 0.494) indicates a moderate positive relationship between Land 

Surface Temperature (LST) and the differenced Normalized Burn Ratio (dNBR). This suggests that areas with 

higher surface temperatures tend to have higher burn severity, but the relationship is not strong, meaning other 

factors also influence fire severity. This could be vegetation type burn differently, impacting dNBR also terrain 

and aspect slopes and orientations affect fire spread and heat retention. Moreover, pre-fire conditions like 

moisture content, fuel load, and wind conditions could influence burn severity. Therefore, we must continue the 

analysis using more data inputs. 
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4.2 Pearson correlation between fire area and seasonal tempratures 

In the 6 years of 2016-2022, the highest peak temperature was recorded in the dry season. At the same time, the 

results from threshold value and burned area calculation of each year interval of 8-year periods are also 

obtained, as shown in Table 5-1. It presents a summary of fire-related metrics and temperature trends across five 

different periods between 2016 and 2024. It includes the fire-affected area calculated in hectares, and 

corresponding temperature data. The annual high temperatures remain relatively consistent, ranging from 

39.16°C to 39.97°C. The dry season hot temperatures show slight fluctuations but remain in the upper 30s, 

suggesting persistent high fire risk conditions, while wet season temperatures are notably lower, staying within 

the high 20s. Overall, it suggests a trend of decreasing burned area, possibly influenced by climatic variations or 

improved fire management, despite consistently high dry season temperatures. 

 

Table 1 Average hot temperature for the given years 

1. Fire area and dry season temperature correlation is (r =0.82); it means that higher temperatures during the dry 

season led to more extensive fire activity. Fig. 6(a) shows the scattered plot of fire area and dry season 

temperature. 

2. Fire area and wet season hot temperature correlation is (r = 0.65); we can assume that the wet season also 

play small significant role on the burned area fire activity. Fig. 6(b) shows the scattered plot of fire area and wet 

season temperature. 

3. Fire area and annual temperature correlation is (r = 0.91); we can assume that the annual temperature of the 

area has a higher effect on the fire activity. Overall higher temperatures throughout the year have a significant 

impact on forest fire severity. This suggests that both seasonal and annual temperature increases are important 

factors in fire risk. Fig. 6(c) shows the scattered plot of fire area and annual temperature. 

 

Year 2016-2018 2019-2020 2020-2021 2022-2023 2023-2024 

fire area calculated (ha) 63.86 53.8 32.7 41.2 33.13 

Avg hot temp (dry season) °C 38.9 38.7 38.15 38.64 38.5 

Avg hot temp (wet season) °C 28.02 28.95 27.34 27.1 27.5 

Annual high temp °C 39.97 39.88 39.16 39.51 39.5 
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Fig. 6 Scattered plots of correlation (a) Fire area and dry season temperature. (b) Fire area and wet season 

temperature. (c) Fire area and annual temperature. 

 

V. Discussion 

Discussion between LST and dNBR result 

The Land Surface Temperature (LST) map provides critical insights into the thermal characteristics of the 

studied area, revealing spatial temperature variations that are influenced by fire impact and topographic factors. 

The observed temperature distribution indicates distinct zones, where higher LST values (red or orange areas) 

correspond to surfaces that absorb and retain heat, while lower LST values (blue or green areas) represent 

relatively cooler regions. 

High LST regions (red or orange): these areas represent burned surfaces, which absorb and retain more heat due 

to their lower moisture content and lack of vegetation. These regions correspond to highly burned zones, where 

vegetation loss increases surface temperature. 

Low LST regions (blue or green): These areas indicate unburned forest patches or areas with significant 

vegetation recovery. 

Transition zones and intermediate LST (yellow or light orange): represent areas undergoing partial fire damage, 

mixed land cover, and recent vegetation regrowth. These regions also indicate moderate burn severity, where 

fire impacted the landscape but did not completely remove vegetation cover. 

The spatial pattern of LST can be used to validate burn severity classifications derived from indices like dNBR, 

helping to distinguish between high-severity burns and areas with partial recovery. Overall, the LST results 

highlight the thermal heterogeneity of the landscape and provide valuable information for understanding the 

extent and impact of fire, land cover changes, and post-fire recovery dynamics. Further integration with dNBR 

and vegetation indices would enhance the accuracy of fire impact assessments.  

 

Discussion between fire area and seasonal temperature 

The results confirm that temperature, particularly during the dry season and across the year, is a key driver of 

forest fire extent. The data and visualizations provide clear evidence that temperature plays a central role in 

influencing forest fire dynamics, particularly in terms of the total area burned. In Fig. 6(a), 6(b), and 6(c), the 

strong positive correlations between annual, wet season, and dry season temperatures and the burned area 

indicate that higher temperatures contribute to more extensive fire outbreaks. Among these, dry season 

temperature (Fig. c) demonstrates the most prominent influence. This is consistent with the known fire behavior 

in tropical and subtropical ecosystems, where hot and dry conditions exacerbate vegetation dryness, reduce fuel 

moisture, and promote rapid fire spread. 

Conclusion 

Based on our analysis of forest fires in the Chagni area from 2016 to 2024, incorporating dNBR, LST and 

seasonal patterns the following conclusions are made: 

To reduce fire risks, prioritize fire prevention strategies during periods of high temperatures, especially during 

the dry season. Fire risk models should incorporate annual temperature trends to forecast potential fire seasons 

more accurately.  

Integrate LST trends with fire detection models to enhance early warning systems. Using real-time satellite data 

to track temperature fluctuations and detect potential fire outbreaks. Also, implementing threshold-based alerts 

combining LST and dNBR values for proactive fire management. 



Effect of solar radiation and temporal variations on forest fire occurrence and severity in .. 

www.irjes.com                                                                                                                                          174 | Page 

Targeted fire prevention strategies, fire prevention efforts on peak fire months (March–May) when high LST 

values correlate with severe fire risk. Conduct controlled burns and vegetation management in high-risk zones 

before the dry season to reduce fuel loads. Strengthen community awareness programs on fire hazards during 

the dry season. Develop firebreaks and buffer zones in regions where steep slopes and high LST values indicate 

greater fire vulnerability. 

By implementing these strategies, fire management in the Ethiopian highlands can be more proactive and data-

driven, ultimately reducing fire severity and improving resilience against wildfire disasters. 
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