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ABSTRACT: This study focuses on characterizing, classifying, and forecasting water stress in tomato plants 

using real-time data from a novel sensor, the bioristor, and various artificial intelligence models. Initially, 

classification models like Decision Trees and Random Forest were employed to differentiate between different 

stress statuses of tomato plants. Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory 

(LSTM) networks, were utilized for predicting future water stress levels in tomatoes, considering both binary 

and multi-status scenarios. The results demonstrated high accuracy, precision, recall, and F-measure, 

showcasing the efficacy of the bioristor sensor and AI models in practical smart irrigation setups. Building 

upon the base paper's methodology, this study extends the analysis by incorporating additional techniques such 

as Convolutional Neural Networks (CNN) and a Voting Classifier, achieving a notable 97% accuracy. 

Furthermore, the study suggests enhancing performance through ensemble methods, combining predictions 

from multiple models. Additionally, to facilitate user testing, a frontend utilizing the Flask framework with user 

authentication is proposed. Overall, this research underscores the potential of leveraging advanced sensors and 

machine learning techniques for optimizing irrigation practices and enhancing agricultural productivity. 

INDEX TERMS AI modeling and forecasting, bioristor, precision agriculture, recurrent neural network, 

tomato plants, tree-based classifiers, smart irrigation, water stress. 

 

I. INTRODUCTION: 

Drought poses a significant threat to agricultural productivity, leading to water stress and substantial 

yield losses in agro-ecosystems [1]. The year 2022 witnessed one of the most severe water shortages across 

Europe, with Italy experiencing a particularly harsh drought, causing crop yields to plummet by up to 45% [1]. 

This crisis underscores the critical need for efficient water resource management in agriculture to ensure 

sustainable food production [2]. Water stress adversely affects various physiological processes in plants, 

including photosynthesis, transpiration, and nutrient uptake, ultimately diminishing vegetative growth and crop 

yield, thereby jeopardizing food security [3], [4]. 

The detrimental effects of water and heat stress on summer crop yields have been profound, with 

significant impacts on crops like grain maize, soybeans, and sunflowers [1]. The concurrent occurrence of 

drought and heatwaves exacerbates the situation, exacerbating dry conditions and further hampering agricultural 

productivity [5]. As observed in Europe during the summer of 2022, persistent water scarcity coupled with high 

temperatures resulted in widespread crop failures and economic losses [1]. 

In light of these challenges, it is imperative to adopt strategies for rational water usage in agriculture to 

mitigate the adverse effects of water stress on crop yields [6]. Effective water management practices can help 

optimize water usage, enhance crop resilience to drought, and promote sustainable agricultural practices [7]. 

Given the dynamic nature of drought conditions and their detrimental impact on agricultural systems, there is a 

growing emphasis on developing advanced techniques for drought characterization, prediction, and mitigation 

[8]. 

Recent advancements in machine learning (ML) and artificial intelligence (AI) have paved the way for 

innovative approaches to drought characterization and modeling [9]. ML and AI techniques offer powerful tools 

for analyzing complex datasets, identifying patterns, and making accurate predictions, thereby facilitating 

informed decision-making in agriculture [10]. By leveraging real-time data from sensors and other sources, ML 
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models can provide valuable insights into soil moisture levels, plant health, and overall crop performance, 

enabling farmers to implement timely interventions and optimize resource allocation [11]. 

In this context, the development of novel sensing technologies, such as the bioristor sensor, holds 

immense promise for enhancing our understanding of plant responses to water stress [12]. The bioristor sensor, 

a recent innovation in precision agriculture, enables in vivo monitoring of dynamic changes in the chemical 

composition of plant sap, particularly in drought-stressed tomato and grapevine plants [13]. By providing real-

time data on plant physiological parameters, the bioristor sensor offers valuable information for optimizing 

irrigation practices and improving water use efficiency in greenhouse environments [14]. 

Against this backdrop, this study aims to characterize, classify, and forecast water stress in tomato 

plants using real-time data obtained from the bioristor sensor and various AI models. The primary objective is to 

develop robust prediction models capable of accurately identifying and predicting water stress conditions in 

tomato plants, thereby enabling proactive interventions to mitigate the impact of drought on crop yields [15]. By 

integrating advanced sensing technologies with state-of-the-art ML techniques, this research seeks to contribute 

to the development of smart irrigation systems and decision support tools for sustainable water management in 

agriculture [16]. 

The remainder of this paper is organized as follows: Section II provides an overview of related work in 

the field of drought characterization and prediction using ML and AI techniques. Section III describes the 

methodology adopted for data collection, preprocessing, and model development. Section IV presents the 

experimental results and performance evaluation of the proposed models. Section V discusses the implications 

of the findings and outlines future research directions. Finally, Section VI concludes the paper with a summary 

of key findings and contributions. 

 

II. LITERATURE SURVEY 

In recent years, there has been a surge in research focused on leveraging advanced technologies, such 

as deep learning, convolutional neural networks (CNNs), and artificial intelligence (AI), to address various 

challenges in agriculture, including pest detection, crop growth monitoring, and water management. This 

literature survey provides an overview of key studies in this domain, highlighting the significance of AI-driven 

approaches in improving agricultural practices and enhancing productivity. 

Jeong et al. [1] proposed a deep neural network-based approach for detecting the tomato leaf miner, a 

notorious pest causing significant damage to tomato plants. By employing a deep learning framework, the 

authors achieved accurate and efficient detection of the pest, demonstrating the potential of AI techniques in 

pest management strategies. 

Similarly, Hao et al. [3] introduced a fast recognition method for multiple apple targets in complex 

occlusion environments. The proposed method, based on the improved YOLOv5 algorithm, enabled rapid and 

reliable identification of apple targets, facilitating timely interventions to mitigate pest infestations and minimize 

crop losses. 

Gang et al. [2] developed a two-stage CNN model for estimating greenhouse lettuce growth indices 

using RGB-D images. By integrating depth information with RGB images, the proposed model accurately 

estimated growth indices, providing valuable insights for optimizing cultivation practices and enhancing crop 

yield in controlled environments. 

Advancements in IoT and AI have paved the way for the development of smart irrigation systems 

aimed at optimizing water usage and promoting sustainable agriculture. Nawandar and Satpute [7] proposed an 

IoT-based low-cost and intelligent module for smart irrigation systems. By integrating sensor data with AI 

algorithms, the system autonomously monitored soil moisture levels and regulated irrigation, thereby conserving 

water resources and improving crop yield. 

Similarly, Goap et al. [8] presented an IoT-based smart irrigation management system leveraging 

machine learning and open-source technologies. The system utilized sensor data to analyze soil moisture 

content, weather conditions, and crop water requirements, enabling precision irrigation scheduling and efficient 

water management practices. 

Artificial intelligence has emerged as a powerful tool for optimizing various aspects of agriculture, 

from crop cultivation to pest management. Al-bayati and Ustundag [4] proposed a modified evolutionary 

optimization approach for plant disease identification. By harnessing evolutionary algorithms, the authors 

developed a robust disease identification system capable of accurately diagnosing plant diseases based on 

symptom patterns, facilitating timely interventions to prevent crop losses. 

Sharma et al. [5] emphasized the role of AI and embedded sensing technologies in enabling smart 

agriculture. By integrating AI algorithms with embedded sensors, the authors demonstrated the potential of data-

driven approaches in enhancing agricultural productivity, improving resource utilization, and mitigating 

environmental impacts. 
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Accurate estimation of soil moisture is crucial for efficient water management in agriculture. Arif et al. 

[6] proposed a method for estimating soil moisture in paddy fields using artificial neural networks (ANNs). By 

training ANNs on sensor data, the authors developed a predictive model capable of estimating soil moisture 

levels with high accuracy, facilitating informed irrigation decisions and optimizing water use efficiency. 

Overall, the studies discussed in this literature survey highlight the growing interest in AI-driven 

approaches for addressing key challenges in agriculture, ranging from pest management to crop growth 

monitoring and water resource management. By leveraging advanced technologies and innovative 

methodologies, researchers aim to enhance agricultural sustainability, improve food security, and mitigate the 

impacts of climate change on global food systems. 

 

III. METHODLOGY 

a) Proposed work: 

The proposed work aims to integrate the bioristor sensor with AI models, including machine learning 

and deep learning algorithms, to enhance smart irrigation practices for tomato plants. Real-time data collected 

by the bioristor sensor undergoes analysis through these models for classification and prediction tasks. The 

addition of a deep learning model, specifically a Convolutional Neural Network (CNN), significantly improves 

accuracy, achieving an impressive 97% accuracy rate. Furthermore, the project extends to include the 

development of a user-friendly Flask interface with secure authentication, enhancing the overall user experience 

during system testing. This integration allows for easy input of data and evaluation of system performance, 

promising significant advancements in sustainable and efficient farming practices. 

 

b) System Architecture: 

The system architecture consists of several key components aimed at predicting water stress in tomato 

plants. Initially, data exploration and preprocessing techniques are applied to analyze and prepare the dataset. 

The dataset is then divided into training and testing sets for model development and evaluation. Various 

machine learning and deep learning models, including Decision Trees with Gini index and information gain, 

Random Forest, Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN), are trained 

using the training set. Once trained, these models are tested using the testing set to evaluate their performance in 

predicting water stress levels in tomato plants. The performance of each model is assessed based on metrics 

such as accuracy, precision, recall, and F-measure. The system architecture enables the integration of multiple 

predictive models to provide robust and accurate predictions, ultimately contributing to improved agricultural 

outcomes and smart irrigation practices. 

 

 
Fig 1 Proposed Architecture 

 

c) Dataset collection:  

The data set collection process involved the insertion of the bioristor sensor into the stem of tomato 

plants, as depicted in Figure 1, following the procedures outlined in [26]. A customized local control unit, 

equipped with a National Instruments USB-6343 multifunction I/O device, facilitated data acquisition from the 

bioristor via electrical connections. The control unit featured a multi-channel analog-to-digital converter, 

enabling the conversion of sensor currents to voltage for ease of processing. Data acquisition occurred at a 

frequency of one sample per second, with readings locally stored on a connected PC before being transmitted to 

the Cloud via wireless connections. The acquired data, comprising voltage readings corresponding to the plant's 

physiological responses, were then processed and saved for subsequent analysis and model development. 
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Fig 2 data set 

 

d) DATA PROCESSING 

Data Processing 

For data processing, we utilize pandasdataframe and numpy for reshaping the dataset. Initially, unwanted 

columns are dropped from the dataframe to ensure only relevant features are retained. Subsequently, the training 

data is normalized to ensure consistency and efficiency in model training. 

Visualization using Seaborn&Matplotlib 

Seaborn and Matplotlib libraries are employed for data visualization purposes. These libraries enable us to 

create informative plots and charts to gain insights into the distribution and relationships among different 

variables in the dataset. Visualization aids in understanding the data better and identifying any patterns or 

trends. 

Label Encoding 

Label encoding is applied to categorical variables in the dataset to convert them into numerical format. This 

process assigns a unique numerical value to each category, facilitating the compatibility of categorical data with 

machine learning algorithms that require numerical inputs. 

Feature Selection 

Feature selection techniques are utilized to identify the most relevant variables that contribute significantly to 

the predictive performance of the model. This involves evaluating the importance of each feature and selecting 

the subset of features that best represent the underlying patterns in the data. Feature selection helps improve 

model efficiency and generalization by reducing dimensionality and eliminating redundant or irrelevant features. 

 

e) TRAINING AND TESTING 

Training and testing involve the utilization of machine learning and deep learning models to classify and 

forecast water stress in tomato plants using data collected from the bioristor sensor. In the training phase, the 

models are trained on a portion of the dataset, known as the training set, to learn the underlying patterns and 

relationships between the input features (such as sensor readings) and the corresponding target variable (water 

stress status). Various models, including Decision Trees, Random Forest, LSTM, and CNN, are trained using 

this data. 

Once trained, the models are evaluated on a separate portion of the dataset, known as the testing set, to 

assess their performance and generalization capabilities. This evaluation involves comparing the model 

predictions against the ground truth labels to measure metrics such as accuracy, precision, recall, and F-measure. 

The testing phase ensures that the models can effectively classify and forecast water stress in tomato plants 

when presented with unseen data, thereby validating their utility for real-world applications. 

 

f) ALGORITHMS: 

Decision Tree with GINI: 

Definition: A Decision Tree[21] with GINI index is a classification algorithm that recursively splits the dataset 

based on the feature with the highest reduction in GINI impurity, aiming to create homogeneous leaf nodes. 

Usage in Project: In the project, Decision Tree[21] with GINI is utilized to classify water stress levels in tomato 

plants using bioristor data. It aids in distinguishing between different stress statuses by analyzing features from 

the sensor data, contributing to the optimization of irrigation practices and enhancement of agricultural 

outcomes through accurate prediction of plant health. 

 

Random Forest: 

Definition: Random Forest[22] is an ensemble learning algorithm that constructs multiple decision trees during 

training and combines their predictions to improve accuracy and robustness. 

Usage in Project: Random Forest[22] is employed as a classification model in the project to predict water stress 

levels in tomato plants using bioristor data. By aggregating predictions from multiple decision trees, Random 

Forest enhances the accuracy of stress level classification, aiding in the optimization of irrigation practices and 

facilitating improved agricultural outcomes through precise monitoring of plant health. 



Predictive Analysis of Water Stress in Tomato Plant Utilizing Bioristor Data 

www.irjes.com                                                                                                                                           262 | Page 

LSTM: 

Definition: Long Short-Term Memory (LSTM)[23] is a type of recurrent neural network (RNN) architecture 

designed to capture long-term dependencies in sequential data by maintaining a memory cell with multiple 

gating mechanisms. 

Usage in Project: LSTM[23] is utilized as a deep learning model in the project to forecast future water stress 

levels in tomato plants using bioristor data. By analyzing sequential data from the sensor, LSTM effectively 

captures temporal dependencies and patterns, enabling accurate prediction of water stress. This contributes to 

optimizing irrigation practices and enhancing agricultural outcomes through proactive management of plant 

health. 

 

Extension CNN: 

Definition: Convolutional Neural Network (CNN) [24]is a deep learning architecture designed to effectively 

capture spatial hierarchies in input data by leveraging convolutional layers and pooling operations. 

Usage in Project: As an extension, CNN[24] is integrated into the project as a classification model to further 

improve the prediction of water stress levels in tomato plants using bioristor data. By analyzing spatial features 

extracted from sensor data, CNN efficiently identifies complex patterns, enabling accurate classification of 

stress statuses. Integrating CNN enhances predictive capabilities, facilitating precise monitoring of plant health 

and optimization of irrigation practices for improved agricultural outcomes. 

 

IV. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to differentiate the patient and healthy cases correctly. To 

estimate the accuracy of a test, we should calculate the proportion of true positive and true negative in all 

evaluated cases. Mathematically, this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 
Fig 3 ACCURACY COMPARISON GRAPH 

 

Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified 

as positives. Thus, the formula to calculate the precision is given by: 

Precision = True positives/ (True positives + False positives) = TP/(TP + FP) 

 
Fig 4  PRECISION COMPARISON GRAPH 

 

Recall: Recall is a metric in machine learning that measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly predicted positive observations to the total actual 

positives, providing insights into a model's completeness in capturing instances of a given class. 
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Fig 5 RECALL  COMPARISON GRAPH 

 

F1-Score: F1 score is a machine learning evaluation metric that measures a model's accuracy. It combines the 

precision and recall scores of a model. The accuracy metric computes how many times a model made a correct 

prediction across the entire dataset. 

 

 

 
Fig 6  F1 COMPARISON GRAPH 

 

 
Fig 7 PERFORMANCE EVALUATION 
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Fig 8 HOME PAGE 

 
Fig 9 sign up 

 
Fig 10 sign in 

 
Fig 11 upload input data 

 
Fig 12 predicted result 
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Fig 13 upload input data 

 
Fig 14 predicted result 

 

V. CONCLUSION 

In conclusion, the project successfully demonstrates the effectiveness of utilizing real-time data from 

the bioristor sensor alongside various artificial intelligence models for characterizing, classifying, and 

forecasting water stress in tomato plants. Classification models like Decision Trees and Random Forests proved 

effective in distinguishing different stress statuses, while recurrent neural networks provided promising 

predictions for future stress levels. Particularly, the deep learning model CNN exhibited exceptional accuracy at 

97%, showcasing its superiority in handling complex patterns within the data. Additionally, the implementation 

of a Flask-based front end streamlines user interaction, making the system more accessible and practical for 

testing. Overall, these findings highlight the potential of integrating advanced sensing technologies with AI 

models to optimize irrigation practices and improve agricultural outcomes, ultimately contributing to more 

sustainable and efficient farming practices. 

 

VI. FUTURE SCOPE 

The feature scope of the project entails leveraging bioristor data to characterize, classify, and forecast 

water stress levels in tomato plants. Key features include real-time measurements obtained from the bioristor 

sensor, capturing physiological responses indicative of plant water status. These features encompass various 

parameters such as sap flow rate, electrical conductivity, and other biochemical markers reflective of plant 

hydration levels. Additionally, environmental variables such as temperature, humidity, and light intensity may 

also be considered as supplementary features to enhance predictive accuracy. Feature extraction techniques may 

be employed to derive informative attributes from the raw sensor data, facilitating the identification of patterns 

associated with different stress statuses. By incorporating relevant features extracted from bioristor data, the 

project aims to develop robust classification and forecasting models using artificial intelligence techniques, 

providing valuable insights for optimizing irrigation strategies and enhancing agricultural productivity in tomato 

cultivation. 

 

REFERENCES 
[1]. S. Jeong, S. Jeong, and J. Bong, ‘‘Detection of tomato leaf miner using deep neural network,’’ Sensors, vol. 22, no. 24, p. 9959, 

Dec. 2022. 

[2]. M.S.Gang,H.J.Kim,andD.W.Kim,‘‘Estimationofgreenhouse lettuce growth indices based on atwo-stage CNNusingRGB-

Dimages,’’Sensors, vol. 22, no. 15, p. 5499, Jul. 2022. 
[3]. Q. Hao, X. Guo, and F. Yang, ‘‘Fast recognition method for multiple apple targets in complex occlusion environment based on 

improved YOLOv5,’’ J. Sensors, vol. 2023, pp. 1–13, Feb. 2023. 

[4]. J. S. H. Al-bayati and B. B. Ustundag, ‘‘Artificial intelligence in smart agriculture: Modified evolutionary optimization approach 
for plant disease identification,’’ in Proc. 4th Int. Symp. Multidisciplinary Stud.Innov.Tech nol. (ISMSIT), Oct. 2020, pp. 1–6. 



Predictive Analysis of Water Stress in Tomato Plant Utilizing Bioristor Data 

www.irjes.com                                                                                                                                           266 | Page 

[5]. A. Sharma, M. Georgi, M. Tregubenko, A. Tselykh, and A. Tselykh, ‘‘Enabling smart agriculture by implementing artificial 

intelligence and embedded sensing,’’ Comput. Ind. Eng., vol. 165, Mar. 2022, Art. no. 107936.  

[6]. C. Arif, M. Mizoguchi, B. I. Setiawan, and R. Doi, ‘‘Estimation of soil moisture in paddy field using artificial neural networks,’’ 
2013, arXiv:1303.1868.  

[7]. N. K. Nawandar and V. R. Satpute, ‘‘IoT based low cost and intelligent moduleforsmartirrigation system,’’ Comput. 

Electron.Agricult., vol. 162, pp. 979–990, Jul. 2019. 
[8]. A. Goap, D. Sharma, A. K. Shukla, and C. R. Krishna, ‘‘An IoT based smart irrigation management system using Machine learning 

and open source technologies,’’ Comput. Electron.Agricult., vol. 155, pp. 41–49, Dec. 2018. 

[9]. M.Romero, Y. Luo, B. Su, and S. Fuentes, ‘‘Vineyard water status estimation using 
multispectralimageryfromanUAVplatformandmachinelearning algorithms for irrigation scheduling management,’’ Comput. 

Electron.Agricult., vol. 147, pp. 109–117, Apr. 2018.  

[10]. R.RevathyandS.Balamurali, ‘‘Developing an efficient irrigation scheduling system using hybrid machine learning algorithm to 
enhance the sugarcane crop productivity,’’ Res. Square, 2022, doi: 10.21203/rs.3.rs 1504824/v1.  

[11]. M.Nagappan,V.Gopalakrishnan,andM.Alagappan,‘‘Predictionof refer ence evapotranspiration for irrigation scheduling using 

machine learning,’’ Hydrol. Sci. J., vol. 65, no. 16, pp. 2669–2677, Dec. 2020. 
[12]. A. A. Farooque, H. Afzaal, F. Abbas, M. Bos, J. Maqsood, X. Wang, and N. Hussain, ‘‘Forecasting daily evapotranspiration using 

artificial neural networks for sustainable irrigation scheduling,’’ Irrigation Sci., vol. 40, no. 1, pp. 55–69, Jan. 2022. 

[13]. S. S. Bashir, A. Hussain, S. J. Hussain, O. A. Wani, S. ZahidNabi, N. A. Dar, F. S. Baloch, and S. Mansoor, ‘‘Plant drought stress 
tolerance: Understanding its physiological, biochemical and molecular mechanisms,’’ Biotechnol. Biotechnol. Equip., vol. 35, no. 

1, pp. 1912–1925, Jan. 2021.  

[14]. V. Buffagni, F. Vurro, M. Janni, M. Gullì, A. A. Keller, and N. Marmiroli, ‘‘Shaping durum wheat for the future: Gene expression 

analyses and metabolites profiling support the contribution of BCAT genes to drought stress response,’’ Frontiers Plant Sci., vol. 

11, p. 891, Jul. 2020. 

[15]. A. Toreti, D. Bavera, J. Acosta Navarro, C. Cammalleri, A. de Jager, C. Di Ciollo, A. HrastEssenfelder, W. Maetens, D. Magni, D. 
Masante, M. Mazzeschi, S. Niemeyer, and J. Spinoni, ‘‘Drought in Europe: August 2022,’’ Publications Office Eur. Union, 

Luxembourg, Tech. Rep. EUR 31192 EN, 2022.  

[16]. A. Gorlapalli, S. Kallakuri, P. D. Sreekanth, R. Patil, N. Bandumula, G. Ondrasek, M. Admala, C. Gireesh, M. S. Anantha, B. 
Parmar, B. K. Yadav, R. M. Sundaram, and S. Rathod, ‘‘Characterization and pre diction of water stress using time series and 

artificial intelligence models,’’ Sustainability, vol. 14, no. 11, p. 6690, May 2022. 

[17]. A. K. Rico-Chávez, J. A. Franco, A. A. Fernandez-Jaramillo, L. M. Contreras-Medina, R. G. Guevara-González, and Q. Hernandez 
Escobedo, ‘‘Machine learning for plant stress modeling: A perspective towards hormesis management,’’ Plants, vol. 11, no. 7, p. 

970, Apr. 2022. 

[18]. A. Finco, D. Bentivoglio, G. Chiaraluce, M. Alberi, E. Chiarelli, A. Maino, F. Mantovani, M. Montuschi, K. G. C. Raptis, F. 
Semenza, V. Strati, F. Vurro, E. Marchetti, M. Bettelli, M. Janni, E. Anceschi, C. Sportolaro, and G. Bucci, ‘‘Combining precision 

viticulture technologies and economic indices to sustainable water use management,’’ Water, vol. 14, no. 9, p. 1493, May 2022.  

[19]. M. Janni, N. Coppede, M. Bettelli, N. Briglia, A. Petrozza, S. Summerer, F. Vurro, D. Danzi, F. Cellini, N. Marmiroli, D. Pignone, 
S. Iannotta, and A. Zappettini, ‘‘In vivo phenotyping for the early detection of drought stress in tomato,’’ Plant Phenomics, vol. 

2019, pp. 1–10, Jan. 2019, Art. no. 6168209. 
[20]. J. Michela, C. Claudia, B. Federico, P. Sara, V. Filippo, C. Nicola, B. Manuele, C. Davide, F. Loreto, and A. Zappettini, ‘‘Real-time 

monitoring of arundodonax response to saline stress through the application of in vivo sensing technology,’’ Sci. Rep., vol. 11, no. 

1, p. 18598, Sep. 2021. 

[21]. F. Vurro, M. Janni, N. Coppedè, F. Gentile, R. Manfredi, M. Bettelli, and A. Zappettini, ‘‘Development of an in vivo sensor to 

monitor the effects of vapour pressure deficit (VPD) changes to improve water productivity in agriculture,’’ Sensors, vol. 19, no. 

21, p. 4667, Oct. 2019. 
[22]. K. Jha, A. Doshi, P. Patel, and M. Shah, ‘‘A comprehensive review on automation in agriculture using artificial intelligence,’’ 

Artif.Intell.Agricult., vol. 2, pp. 1–12, Jun. 2019. 

[23]. E. A. Abioye, O. Hensel, T. J. Esau, O. Elijah, M.S.Z.Abidin,A.S.Ayobami,O.Yerima,andA.Nasirahmadi,‘‘Precisionirrigation man 
agement using machine learning and digital farming solutions,’’ AgriEngineering, vol. 4, no. 1, pp. 70–103, Feb. 2022. 

[24]. Y. Ahansal, M. Bouziani, R. Yaagoubi, I. Sebari, K. Sebari, and L. Kenny, ‘‘Towards smart irrigation: A literature review on the 

use of geospatial technologies and machine learning in the management of water resources in arboriculture,’’ Agronomy, vol. 12, 
no. 2, p. 297, Jan. 2022. 

[25]. M. K. Saggi and S. Jain, ‘‘A survey towards decision support system on smart irrigation scheduling using machine learning 

approaches,’’ Arch. Comput.Methods Eng., vol. 29, no. 6, pp.4455–4478, Oct. 2022. 
[26]. N. Coppedè, M. Janni, M. Bettelli, C. L. Maida, F. Gentile, M. Villani, R. Ruotolo, S. Iannotta, N. Marmiroli, M. Marmiroli, and A. 

Zappettini, ‘‘An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision 

farming,’’ Sci. Rep., vol. 7, no. 1, p. 16195, Nov. 2017. 
[27]. M. A. M. Almuhaya, W. A. Jabbar, N. Sulaiman, and S. Abdulmalek, ‘‘A survey on LoRaWAN technology: Recent trends, 

opportunities, simulation tools and future directions,’’ Electronics, vol. 11, no. 1, p. 164, Jan. 2022. 

[28]. P. Carella, D. C. Wilson, C. J. Kempthorne, and R. K. Cameron, ‘‘Vascular sap proteomics: Providing insight into long-distance 
signalingduring stress,’’ Frontiers Plant Sci., vol. 7, p. 651, May 2016. 


