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Abstract 

In the field of machine learning, a class imbalance occurs when there is a statistically significant difference in 

the number of instances (majority) between the two classes. Class imbalance can cause datasets to be biased 

toward the majority (negative) class in Machine Learning algorithms. This can have detrimental effects if false 

negatives are penalized more heavily than false positives. We investigate class rarity in big data through two case 

studies in our paper, each using a unique combination of three learners (logistic regression, random forest, and 

gradient-boosted trees) and three performance metrics (area under the precision-recall curve, geometric mean, 

and area under the receiver operating characteristic curve). Our trials produced class rarity, an exceptionally 

high degree of class imbalance. 

 

Keywords: Big data, Class imbalance, Machine learning, Medicare fraud, POST Slowloris, Class rarity & under 

sampling. 

 

I. Introduction 

When called upon to define big data, researchers and practitioners in the field of data science frequently 

refer to the six V’s: volume, variety, velocity, variability, value, and veracity [1]. Volume, most certainly the best-

known property of big data, is associated with the profusion of data produced by an organization. Variety covers 

the handling of structured, unstructured, and semi-structured data. Velocity takes into account how quickly data 

is manufactured, issued, and dealt with. Variability refers to the fluctuations in data. Value is often regarded as a 

critical attribute because it is required for effective decision-making. Veracity is associated with the fidelity of 

data. A definition of big data related to a minimum number of dataset instances has not been established 

in the literature. For example, in [2] this minimum was identified as 100,000 instances, but other works 

use 1,000,000 instances [3, 4]. The increasing reliance on big data applications is pushing the development 

of efficient knowledge-extraction methods for this type of data. 

Any dataset containing majority and minority classes, e.g., normal transactions and fraudulent 

transactions for a large bank over the course of a day, can be viewed as class- imbalanced. Various degrees 

of class imbalance exist, ranging from slightly imbalanced to rarity. Class rarity in a dataset is defined by 

comparatively inconsequential numbers of positive instances [5], e.g., the occurrence of 10 fraudulent 

transactions out of 1,000,000 total transactions generated daily for a bank. Binary classification is usually 

associated with class imbalance since many multi-class classification problems can be managed by 

breaking down the data into multiple binary classification tasks. The minority (positive) class, which 

comprises a smaller part of the dataset, is usually the class of interest in real-world problems [2], as 

opposed to the majority (negative) class, which comprises the larger part of the dataset. Although class 

imbalance affects both big and non-big data, the adverse effects are usually more perceptible in the 

former, due to the existence of extreme degrees of class imbalance within big data [6] as a result of 

voluminous over- representation of the negative (majority) class within datasets. 

Machine Learning (ML) algorithms are usually better classifiers than traditional statistical 

techniques [7–9], but these algorithms cannot properly differentiate between majority and minority classes 

if the dataset is plagued by class rarity. The inability to sufficiently distinguish majority from minority 

classes is analogous to searching for the proverbial needle in a haystack and could result in the classifier 

labeling almost all instances as the majority (negative) class. Performance metric values based on such poor 

analysis would be deceptively high. When the occurrence of a false negative incurs a higher cost than a false 

positive, a classifier’s bias towards the majority class may lead to adverse con- sequences [10]. 

Our work evaluates the classification performance of three learners (Gradient-Boosted Trees, 

Logistic Regression, Random Forest) with three performance metrics (Area Under the Receiver Operating 

Characteristic (ROC) Curve, Area Under the Precision-Recall Curve, Geometric Mean), and also compares 

results from two case studies involving imbalanced big data from different application domains. Class rarity 

was injected by randomly removing positive instances to artificially generate eight subsets of positive class 

instances (1,000, 750, 500, 400, 300, 200, 100, and 50). For comparative purposes, we also evaluated the 
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original positive class instances for both datasets. All model evalu- ations were performed through Cross- 

Validation. For our processing needs, we use the Apache Spark [11] and Apache Hadoop frameworks [12–

14], both of which can handle big data. 

The first case study is based on the Medicare Part B dataset [15, 16]. The original data- set contains 

1,409 (0.038%) positive class instances out of 3,692,555 total instances. The results indicate that 

performance scores for the learners generally improve with the Area 

Under the ROC Curve metric as the rarity level decreases, while corresponding scores with the 

Area Under the Precision-Recall Curve (AUPRC) and Geometric Mean (GM) metrics remain relatively 

unchanged. The second case study is based on a combination of two datasets: POST dataset [17] and 

Slowloris dataset [18 

The remainder of this paper is organized as follows: Section "Related Work" provides an overview 

of literature that focuses on datasets with class rarity; Section "Case studies datasets" provides details on the 

Medicare Part B and POSTSlowloris Combined data- sets; Section "Methodologies" describes the different 

aspects of the methodology used to develop and implement our approach, including injection of rarity, 

model evalua tion, and experiment design; Section "Results and discussion" presents and discusses our 

empirical results; Section "Conclusion" concludes our paper with a summary of the work presented and 

suggestions for related future work. 

 

II. Related work 

Our search for related work found many more big data studies involving severe class imbalance 

than class rarity. It should be noted that research on class rarity is still in its infancy. 

In [11], researchers examine Evolutionary Under sampling (EUS) in cases of class imbalance 

in big data, based on the initial knowledge that EUS had shown promise in addressing class imbalance 

in traditional data. The EUS approach is implemented within the Apache Spark framework, and compared 

with their previous implementation of EUS with the Apache Hadoop framework. The base learner in both 

implementations is the C4.5 decision tree learner which is incorporated into the overall class balancing 

and classification process. EUS provides a fitness function for a prototype selection method, where the 

fitness function aims to find the proper balance between reduction (under- sampling) of training data 

instances and classification performance [19].  

 

An evaluation of the performance of several methods used to address class imbalance in big 

data was performed in [20], where all methods were implemented within the Apache Hadoop framework, 

with RF as the base classifier. These methods included Random Oversampling (ROS), RUS, Synthetic 

Minority Over-sampling Technique (SMOTE), and a cost-sensitive learning version of RF. The datasets 

in this study ranged from approximately 435,000 to 5,700,000 instances, with feature set sizes between 

2 and 41. Majority-to-minority class ratios varied between 80:20 and 77,670:1. There were several clear 

instances of big data datasets with class rarity in this work: (52 positive instances and 3,883,370 negative 

instances; 52 positive instances and 972,781 negative instances; 

15 positive instances and 1,165,011 negative instances; 20 positive instances and 1,553,348 

instances; 26 positive instances and 1,941,685 negative instances; and 52 positive instances and 3,883,370 

negative ones. The results of the experiment were inconclusive, as there was no best model among these 

four diverse algorithms. The authors state that the best performing algorithm depends on the number of 

mappers with Map Reduce that are chosen to run the experiment. For GM, the best overall values of 

ROS, RUS, SMOTE, and RF were 0.986, 0.984, 0.914, and 0.965, respectively. Just like the related work 

in the previous paragraph, the focus of this related study is not on class rarity. 

The work in [21] examined a modification to DeepQA, the technology that powered IBM 

Watson on the Jeopardy! game show. DeepQA is a question-and-answer, natural language processing 

system that can help professionals make critical and timely decisions [22]. The results show that 

regularized LR with over-sampling outperformed unregularized LR with over-sampling in terms of 

accuracy, which increased from 1.6 to 28%. It is worth mentioning that for this study, some data scientists 

may not consider the total number of dataset instances (720,000) as big data. 

Finally, in [5], the impact of class rarity on big data is evaluated. The researchers use publicly available 

Medicare data and map known fraudulent providers, from the List of Excluded Individuals/Entities (LEIE) 

[23], as labels for the positive class. 

 

Case studies datasets 

Our work includes two case studies. The dataset used in the first case study came from a different 

application domain than the dataset used in the second case study. The first case study is based on the 

Medicare Part B dataset, which contains 1,409 (0.038%) positive class instances out of 3,692,555 total 
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instances. The second case study is based on a combination of two datasets: POST dataset and Slowloris 

dataset. The merged dataset, referred to as POSTSlowloris Combined, contains 6,646 (0.203%) positive 

instances out of 3,276,866 total instances. 

 

Medicare Part B 

The Medicare Physician and Other Supplier (Part B) dataset used in this paper spans years 

2012 to 2016. It is provided by the Centers for Medicare and Medicaid Services. The Part B dataset, which 

includes claims information for each procedure that a physician/provider performs in a given year, is derived 

from administrative claims data for Medicare beneficiaries enrolled in the Fee-For-Service program, where 

all claims information is recorded after payments are made [15]. Therefore, we can safely assume that these 

datasets are already reasonably cleansed. 

 

POSTSlowloris 

DDoS attacks are carried out through various methods designed to deny network avail- ability to 

legitimate users [24]. Hypertext Transfer Protocol (HTTP) contains several exploitable vulnerabilities and 

is often targeted for DDoS attacks [25, 26].  

Data collection for the POST and Slowloris DDoS attacks was performed within a real-world 

network setting. An ad hoc Apache web server, which was set up within a campus network environment, 

served as a viable target. The Switchblade 4 tool from the Open Web Application Security Project and a 

Slowloris.py attack script [27] were used to generate attack packets for POST and Slowloris, respectively. 

Attacks were launched from a single host computer in hourly intervals. Attack configuration settings, 

such as connection intervals and number of parallel connections, were varied, but the same PHP form 

element on the web server was targeted during the attack. 

 

III. Methodologies 

This section is a report on the methodologies followed, including our reasons for choos- ing them. 

We discuss the big data processing framework, injection of rarity, one-hot encoding, classifiers, 

performance metrics, model evaluation, addressing of randomness, and experiment design. 

 

Big data processing framework 

To facilitate the use of ML in big data analytics, data engineers build algorithms within software 

modules or packages, ensuring that reliability, speed, and scale are factored in. For the ML tasks, we use a 

state-of-the-art library, Machine Learning Library (MLlib), provided by Apache Spark [28, 29], hereinafter 

referred to as Spark. Compared to tra- ditional ML methods, Spark is exponentially faster at data processing, 

and is one of the largest open source projects for big data processing [30]. In addition, we utilize Apache 

Hadoop [12–14], which provides Hadoop Distributed File System (HDFS), a scalable component capable 

of storing large files across node clusters, and also utilize Yet Another Resource Negotiator (YARN) [31], a 

component used for job management and schedul- ing in High Performance Computing (HPC). 

For performance stability, we kept our data partitions invariant and memory use fixed during the 

experiments. Thus, the number of distributed data partitions and the num- ber of the cluster slave nodes 

were picked based on the available resources of our HPC cluster. 

 

Injecting rarity 

The Medicare Part B dataset contains 1,409 (0.038%) positive class instances out of 3,692,555 total 

instances, and the POSTSlowloris Combined dataset contains 6,646 (0.203%) positive instances out of 

3,276,866 total instances. 

From this original data, we artificially generate eight subsets with gradually decreas- ing 

numbers of positive class instances (1,000, 750, 500, 400, 300, 200, 100, and 50). To create each subset, 

we built the model with the same number of negative instances and randomly picked a basket of positive 

counts from the positive instances. Table 1, which provides information on the minority (positive) and 

majority (negative) classes, summa- rizes the datasets (subsets) used in our experiment. 

 

Table 1 Summary of datasets 
Positives Negatives Total %Positives %Negatives 

a. Medicare Part B     

1,409 (all) 3,691,146 3,692,555 0.038 99.962 

1,000 3,691,146 3,692,146 0.027 99.973 

750 3,691,146 3,691,896 0.020 99.980 

500 3,691,146 3,691,646 0.014 99.986 
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400 3,691,146 3,691,546 0.011 99.989 

300 3,691,146 3,691,446 0.008 99.992 

200 3,691,146 3,691,346 0.005 99.995 

100 3,691,146 3,691,246 0.003 99.997 

50 3,691,146 3,691,196 0.001 99.999 

b. PostSlowloris Combined 

6,646 (all) 3,270,220 3,276,866 0.203 99.797 

1,000 3,270,220 3,271,220 0.031 99.969 

750 3,270,220 3,270,970 0.023 99.977 

500 3,270,220 3,270,720 0.015 99.985 

400 3,270,220 3,270,620 0.012 99.988 

300 3,270,220 3,270,520 0.009 99.991 

200 3,270,220 3,270,420 0.006 99.994 

100 3,270,220 3,270,320 0.003 99.997 

50 3,270,220 3,270,270 0.002 99.998 

 

One‑ hot encoding 

Another factor needing attention is categorical features. In their raw form, these are generally not 

compatible with ML algorithms. Additionally, if the categorical features were indexed, some models 

assume that there is a logical order or a value of the indi- ces. Such subsets of categorical features are 

known as ordinal features.  A  nominal feature, unlike an ordinal one, is a categorical feature whose instances 

can take a value that cannot be organized in a logical sequence [7]. In our work, all categorical features 

(nominal) were transformed into dummy variables using a one-hot encoding method [32], allowing 

conversion of nominal features into  numerical  values.  One  disadvan- tage of this method is that a new 

number of features equaling C    1 is generated from each feature, where C is the number of categories 

belonging to the specific feature, and consequently, the total feature space increases in size. 

 

Classifiers 

Our work uses three off-the-shelf learners (RF, GBT, LR), all of which are available in the 

Spark MLlib. These classifiers were selected to provide good coverage of vari- ous ML model families. 

Performance-wise, the three classifiers are regarded favora- bly,  and  they  incorporate  both  ensemble  

and  non-ensemble  algorithms,  providing a reasonable breadth of fraud detection  results  for  assessing  

the  impact  of  rarity  in Big Data [33, 34]. In this section, we describe each model and note configuration 

and hyperparameter changes that differ from the default settings. 

• RF is a regression and classification model tflat employs an ensemble learning approacfl. RF 

constructs a large number of independent decision trees  during training and returns a final model 

prediction tflat is tfle average or majority vote of tfle individual tree results. We build eacfl RF learner 

witfl 100 trees. The param- eter tflat cacfles node IDs for eacfl instance was set to true, and tfle maximum 

memory parameter was set to 1024 MB in order to minimize training time. The maximum bins parameter, 

wflicfl is for discretizing continuous features, was set to 2 since we use one-flot encoding on categorical 

variables. 

 

Performance metrics 

Accuracy or error rate is usually derived from a naive 0.50 threshold that is used in the prediction of one out 

of the two classes. This is usually impractical since in most real- world situations the two classes are 

imbalanced, creating  the  majority  and  minority class groups. The Confusion Matrix (CM) for a binary 

classification problem is shown in Table 2 [10], where positive, the class of interest, is the minority class 

and negative is the majority class. 

• True positive (TP) are positive instances correctly identified as positive. 

• True negative (TN) are negative instances correctly identified as negative. 

• False positive (FP), also known as Type I error, are negative instances incorrectly identified as 

positive. 

• False negative (FN), also known as Type II error, are positive instances incorrectly identified as 

negative. 
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From those four broad CM metrics, we may calculate other performance metrics that consider the rates 

between the positive and the negative class as follows. 

Note that ROC curves are usually used when there are roughly equal numbers of instances for each class, 

in other words when the data is balanced [35]. On the other hand, the use of Precision-Recall curves is 

preferred when there is a moderate to large class imbalance [35]. Since our datasets are severely class-

imbalanced, the use of AUC in this study is for comparative purposes only. 

 

Model evaluation 

In ML, one of the commonly used model evaluation methods is Cross-Validation (CV), in which a portion 

of the data trains the model while the remaining portion validates the built model. Also known as rotation 

estimation, k-fold CV evaluates predictive models by partitioning the original sample into several folds of 

approximately equal size. The inducer is trained and tested k times, where each time it is trained on k      1 

folds and tested on the remaining fold. This is to ensure that all data are used in the classification. 

With imbalanced data, one typically uses stratified k-fold CV, where the minority and majority classes have 

representative proportions, in each fold, of the class labels from the training data. When compared to 

regular cross validation, the stratification scheme is generally better suited for addressing bias and 

variance [36]. 
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Addressing randomness 

Due to the random generation of the datasets (through random CV splits, the selection of 

random positive instances, and the random ordering of instances and features prior to model training), 

the datasets used to build and train the models may retain both good and/or poor instances. Moreover, 

learners such as RF and GBT may randomly select instances during the construction of each tree. Such 

randomness may affect final model performance. To address this problem, we use a repetitive models 

strategy [37] in our work, with each model repeated 10 times. 

 

Experiment design 

The following procedure summarizes the algorithmic steps used in our proposed approach. 

1. Distribute the data among HDFS. 

2. Perform one-flot encoding: The categorical features space is indexed and one-flot encoded to dummy 

variables in order to exclude any assumed ordering, by the learner, between tfle categories of the 

nominal features. This produces new features equal to one less tflan tfle number of categories in eacfl 

feature. 

3. Inject rarity by artificially generating eigflt subsets witfl gradually decreasing numbers of positive class 

instances (1,000, 750, 500, 400, 300, 200, 100, and 50). Addition- ally, we include tfle original datasets 

containing all instances of the positive class. 

4. Perform 5-fold CV and randomly order tfle instances and feature space on all data- sets. Perform the 5-

fold CV witfl eacfl of tfle tflree classifiers (RF, GBT, LR), and eval- uate eacfl model produced witfl tfle 

tflree performance metrics (AUC, AUPRC, GM). 

5. Starting from step 3, repeat tfle entire process 10 times. 

 

To sum things up, we assessed the performance of 2,700 models (2 datasets 5-fold CV 3learners × 9 positive 

counts (rarity) × 10 repetitions). In total, we obtained 8100 per- formance values for the three performance 

metrics involved. 

 

IV. Results and discussion 

Tables 3 and 4 show the average results for the Medicare Part B and POSTSlowloris case studies, 

respectively. Three performance metrics are used in this work (AUC, AUPRC, GM). The classification 

performance of three learners (GBT, LR, RF) is evaluated with each of the three metrics. The highest score 

for each row, where a row represents a given learner for a specified metric, is shown in italics. 

 

Table 3 Medicare Part B average results 

 
PosCount 50 100 200 300 400 500 750 1000 All 

a. AUC          

GBT 0.6906 0.7344 0.7649 0.7822 0.7862 0.7914 0.7888 0.7957 0.7945 

LR 0.7368 0.7477 0.7737 0.7779 0.7946 0.7973 0.8006 0.7998 0.8057 

RF 0.6059 0.6375 0.7214 0.7214 0.7369 0.7503 0.7614 0.7800 0.7962 

b. GM          

GBT 0.0063 0 0.0032 0.0052 0.0045 0.0020 0.0033 0.0042 0.0112 

LR 0 0 0.0032 0.0077 0.0067 0.0080 0.0065 0.0156 0.0153 

RF 0 0 0 0 0 0 0 0 0.0012 

c. AUPRC          

GBT 0.0006 0.0003 0.0018 0.0020 0.0019 0.0027 0.0035 0.0046 0.0055 

LR 0.0001 0.0002 0.0005 0.0013 0.0008 0.0017 0.0019 0.0025 0.0031 

RF 0.0002 0.0001 0.0011 0.0010 0.0011 0.0013 0.0016 0.0025 0.0037 

 

Table 4 POSTSlowloris Combined average results 
PosCount 50 100 200 300 400 500 750 1000 All 

a. AUC          

GBT 0.9948 0.9912 0.9963 0.9951 0.9903 0.9965 0.9979 0.9979 0.9990 

LR 0.9903 0.9952 0.9915 0.9907 0.9841 0.9888 0.9909 0.9888 0.9877 

RF 0.9809 0.9824 0.9818 0.9762 0.9764 0.9769 0.9766 0.9775 0.9753 

b. GM          

GBT 0.6951 0.7422 0.7769 0.7723 0.7949 0.7745 0.7766 0.7484 0.7883 
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LR 0 0.0313 0.1861 0.4800 0.6661 0.7392 0.7384 0.7121 0.8031 

RF 0 0 0 0 0 0 0 0 0 

c. AUPRC          

GBT 0.5465 0.6266 0.6572 0.6887 0.7363 0.7202 0.7561 0.7605 0.9197 

LR 0.0874 0.2199 0.3316 0.4235 0.4738 0.5134 0.5791 0.5842 0.7942 

RF 0.0856 0.2166 0.2875 0.3551 0.4518 0.4444 0.4974 0.4957 0.6325 

 

Generally speaking, from Table 3, part a (AUC), we observe that the performance increases when 

the number of PosCounts increases for all three learners, and “all” posi- tives reports the best performance. 

For parts b (GM), and c (AUPRC), we can see that the results are almost zero for all PosCounts. Particularly 

noticeable are the distinct 0 values for RF for all PosCounts in part b. This means that RF failed to correctly 

classify any positive counts, thus resulting in a TPrate value of 0. Consequently, the GM score, which relies 

on the product of TPrate and TNrate, is also 0. Note that RF with 100 trees builds 100 Decision Trees 

separately and then takes majority voting. Therefore, if in every instance prediction, the majority (more 

than 50) trees decided incorrectly, the final classification for RF will also be incorrect.We observe, for the 

most part, that the performance increases when the number of PosCounts increases for all three learners, 

and “all” positives reports the best performance. Furthermore, GBT reports the best performance, 

followed by LR and RF. It is very noticeable that GBT performs reasonably well with even a PosCounts 

of 50, compared to LR and RF. 

Table 5 shows the ANalysis Of VAriance (ANOVA) [38] 

 

Table 6 Tukey’s HSD Test (PosCounts) 
Case study Learner GBT    LR    RF  

 Sampling AUC AUPR GM  AUC AUPR GM  AUC AUPR GM 

a. Medicare Part B 50 d d –  e e –  f d – 

 100 c d –  de e –  e d – 

 200 b cd –  cd de –  d cd – 

 300 ab cd –  bc cd –  d cd – 

 400 ab cd –  abc cde –  cd cd – 

 500 a bc –  abc bc –  c cd – 

 750 ab abc –  ab bc –  bc bc – 

 1000 a ab –  abc ab –  ab b – 

 All a a –  a a –  a a – 

b. POSTSlowloris Combined 50 abc f d  abc h f  abc g – 

 100 bc e c  a g f  a f – 

 200 ab de ab  ab f e  ab e – 

 300 abc cd abc  abc e d  cd d – 

 400 c b a  c d c  cd c – 

 500 ab bc abc  abc c ab  bcd c – 

 750 a b ab  ab b ab  cd b – 

 1000 a b bc  abc b bc  abcd b – 

 All a a a  bc a a  d a – 

 

Table 7 Tukey’s HSD Test (Learners) 
Case study Learner Metrics  

  AUC AUPRC GM 

Medicare Part B GBT b a a 

 LR a b a 

 RF c b b 

POSTSlowloris Combined GBT a a a 

 LR b b b 

 RF c c c 
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Combined case study, a noticeable deterioration of performance occurs at PosCounts of 100 

and below. As a result, we infer that PosCounts of 200 and below, and 100 and below, are solid indicators 

of class rarity for the first and second case study, respectively. 

 

V. Conclusion 

We employ three learners (GBT, LR, RF) and three performance metrics (AUC, GM, AUPRC) 

to uniquely investigate class rarity in big data. Through our comparative analysis, we demonstrate the 

effectiveness and versatility of our method with two case studies involving imbalanced big data from 

different application domains. 

For the Medicare Part B case study, we observe that classification performance scores for the 

learners generally improve for the AUC metric as the number of PosCounts increases, with “all” 

positives reporting the best performance. The other metrics have scores of zero or approximately zero. 

With regard to the POSTSlowloris Combined case study, the AUC metric yields very high performance 

results for the learners, while co responding scores for the other metrics are, for the most part, noticeably 

lower.  
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