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Abstract : (Keywords: CSHM, WTM) Finite Impulse Response (FIR) filtering operation can be expressed as 

Multiplication of vectors by scalars. A high speed design for FIR filters based on a Computation Sharing 

Multiplier (CSHM) is presented   here.  This CSHM [1,5], which specially targets computation re-use in vector-

scalar products. Our recently proposed Computation Sharing Multiplication approach can be effectively used to 

reduce redundant computations in FIR filtering operation.  

 The main idea is to represent the multiplication in FIR filtering operation as a combination of add and 

shift operations over the common computation results. The common computations are identified by 

decomposing the coefficients of FIR filters.  These computations are performed only once and shared Multiplier 

approach that achieves   high performance in FIR filtering with less overhead. The performance of the proposed 

implementation is compared with implementations based on multipliers like Wallace Tree Multiplier (WTM) 

(Delay 13.2ns & Area 146 LUTS) & Booth Multiplier(Delay 26.642ns & Area 180 LUTS) .We show that 

sharing   multiplier   scheme   improves  the parameters like Delay & Area  with   respect   to the   FIR filter 

implementations   based on the Booth Multiplier & Wallace tree Multiplier. 

 

I. Introduction 
 Recent advances due to the popularity of the portable battery-powered wireless communication systems 

such as cellular phones, pagers and wireless modems and multimedia applications demand high performance 

and low-power VLSI Digital Signal Processing (DSP) is Finite-Impulse Response (FIR) filtering. The FIR filter 

performs the weighted summations of input sequences, which are frequently used to implement high pass, low 

pass and many other types of filters and is widely used in video convolution functions, signal preconditioning 

and various communication applications. 

  Recently, due to the high-performance requirement and increasing complexity of DSP and multimedia 

communication applications, FIR filters with large filter taps are required to operate with high sampling rate, 

which makes the filtering operation very computationally intensive. Complexity reduction of FIR filter 

implementations has also been of particular interest since lower computational complexity leads to high 

performance as well as low delay & area design.  

  The ongoing FIR filter project is a case design of a standard signal processing block employing high 

performance VLSI design techniques and methodologies. The Current prototype has been designed using 

techniques found in high performance applications including hard disk controllers, DSP processors and data 

acquisition systems. The most important and expensive operation performed by the FIR filter is the Digital 

Signal Processing (DSP) function. Besides the MAC circuitry, the FIR filter is a fairly simple system both in 

concept and implementation. 

   Furthermore, the only other circuitry that are required are registers to hold the coefficients, 

simple control logic and pipeline latches if pipelining is to be realized. Therefore, in the design of an FIR filter 

most of the design effort should and has been focused on optimizing the MAC circuit. For a filter input size of 

N>4 the multiplier becomes extremely expensive in respects to delay and power consumption and defines the 

worst-case operation speed. The prototype is used solely for my observation of results in using different 

subsystem designs. Several techniques have been proposed in literature to achieve high performance and low 

power implementation of FIR filters with discrete coefficient values selected from the powers-of-two coefficient 

space .canonical-sign-digit and distributed arithmetic are widely used in the FIR filter design with fixed 

coefficients. Using those techniques, the FIR filtering operation can be simplified to add and shift operations. 

One approach uses integer linear programming to search for the optimized discrete filter coefficient that 

confirms to desired frequency response.  

 The major difficulty encountered in this scheme is that as the filter size or the number of bits used to 

represent a coefficient significantly increase, a large amount of computation is needed. Computation reduction 

techniques in digital FIR filters, which reduce redundant computation, have also been proposed. This approach 

computes the filter output using coefficient differences instead of their original values and decreases the 
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redundant computation by computation reordering and sharing. However, additional computational overhead is 

introduced for identifying the common computations, the results of which can be shared by the sequence of 

operations. This approach also needs additional memory area for computation sharing. To achieve high 

performance without additional memory area computation sharing multiplier is used. Delay, area of the 

proposed implementation is compared with those of FIR filter implementations based on Booth Multiplier and 

Wallace Tree Multipliers. 

 In this paper, a simple scheme in which common computations can be identified with less overhead and shared 

without additional memory area is explored. A computation sharing multiplication approach, which can be 

effectively used to reduce redundant computations in FIR filtering operation, is presented here.  

  The main idea is to represent the multiplication in FIR filtering operation as a combination of add and 

shift operations over the common computation results. The common computations are identified by 

decomposing the coefficients of FIR filters. These computations are performed only once and shared in parallel 

without using memory. This sharing property enables the computation sharing multiplier approach that achieves 

high performance in FIR filtering with less overhead. 

 

II. FIR Filtering Operation Introduction 
 The basic operation of an FIR filter is to compute weighted sums of an input signal by performing a series of 

Multiply And Accumulate (MAC) operations on the input signal. DSP operations most widely use FIR filtering. 

Each MAC operation is performed in exactly one stage of the FIR filter. Within a stage the input signal is 

multiplied by a constant coefficient. The product of the input signal and the coefficient is then added to the 

accumulated multiply and accumulate value of the previous stages and the previous inputs. The behavior of an 

output y(n) of an FIR filter with N stages and inputs x(n) and coefficients c(k) can be shown as: 

 

                      Y(n)=c(0)x(n)+c(1)x(n-1)+c(2)x(n-    2)+…………..+c(N-1)x(n-N)   
    

 In hardware each stage of an FIR filter is computed with in a TAP. A TAP consists of a loadable 

coefficient register, two input registers, a multiplier, an adder and an output register. In FIR filtering, depending 

up on the number of taps the delay is calculated. The FIR filter has N taps, the delay is :(N-1)/(2*Fs); for eg:- A 

21 tap FIR filter operating at a 1KHZ rate has delay of 10ms.For an 8-tap, 8-bit coefficient  FIR filter, eight of 

the above modules are cascaded  to create the design. The coefficient register is 8 bits wide to store the 2‟s 

complement signed coefficient value of each stage. Each TAP consists of multiplier, adder, coefficient register, 

input registers and sum registers. Once the basic block has been created in maximum and verified in HSPICE 

the FIR filter will be created by arraying and interconnecting eight TAP modules. Dividing the FIR filter into an 

array of TAPS as apposed to creating one big FIR block allows modularity and flexibility. The modularity with 

in the TAP sub block allows exchanging of sub blocks (i.e. adder, multiplier) with varying configurations to 

obtain the best area/speed/power design. This TAP module was then instantiated eight times to create the 

FIR_FILTER for functional verification. 

 

III. Vector Scaling Operation 
 FIR filtering operation can be expressed as multiplications of vectors by scalars. The input-output 

relationship of Linear Time Invariant (LTI) FIR filter can be described as  

 

M-1 

Y (n) =∑  C∑ X (n-k) 

K=0 

 

 Where M represents the length of FIR filter, Cĸ‟S are the filter coefficients, and x (n-k) denotes the data 

sample at time instance (n-k). 

  

FIR Filter Methods:  

 Two common methods of realizing FIR filters are the Direct Form (DF) and the Transposed Direct 

Form (TDF) .In the DF realization of the filter there are delay units between multipliers. This implies that the 

present input ,x(n) and N-1 previous samples of the input, that is  x(n-1) to x[n-(N-1)],are  applied to each 

multiplier inputs and the outputs of these multipliers are summed together to form the filter output y(n).               

  

     Y = X .C 
  In the TDF, however, delay units are placed between adders so that the multipliers can be fed 

simultaneously. A DF filter is implemented such that at each clock cycle a new data sample and the 
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corresponding filter coefficient are applied to the multipliers inputs. This Continuous change at both inputs will 

cause a high level of switching activity within the multiplier, and hence leading to higher power consumption. 

Fig 1.1: Direct Form FIR Filter 

        

 

Using a TDF realization, however, the switching activity at data inputs of the multiplier is significantly reduced 

since the data input remains unchanged for a significant number of multiplication operations. This results in a 

considerable reduction in switching activity within the multiplier circuit and consequently leads to less power 

consumption than the DF realization.  

A further reduction in switching activity within the multiplier section of both DF and TDF filters can be 

achieved by implementing the filters such that respective 

A further reduction in switching activity with in the multiplier section of both DF and TDF filters can be 

achieved by implementing the filters such that respective data samples are multiplied with filter coefficients in a 

non-sequential order. This results in reducing the switching activity at both multiplier inputs. In the Direct Form 

FIR filter, a large adder in the final stage lies on the critical path and it slows down the FIR filter. The 

Transposed Direct Form FIR filter is more   appropriate for a high-performance filter structure.Figure1.1 shows 

a direct form implementation of an FIR filter. An equivalent architecture is the transposed direct form as shown 

in figure1. 2. The TDF implements a product of the coefficient vector C = [Co, Cı……. C м-ı] with the scalar x 

(n) at time n. The input x (n) is multiplied by all the coefficients Co, Cı……. Cм-ı simultaneously. In the sequel, 

such product will be referred to as a vector scaling operation. Expressing the filtering operation in terms of a 

vector scaling operation allows opportunity to share computations between operations. The method to identify 

common computations, which can be shared amongst a sequence of operations in the vector and scalar product, 

is also described.  

 

Fig 1.2: Transposed Direct Form FIR Filter 

 

As a result, the multiplication operation is significantly simplified as add and shift operations. Complexity 

reduction in the vector scalar product can be achieved by using the concept of computation sharing. In the direct 
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form FIR filter, a large adder in the final stage lies on the critical path and it slows down the FIR filter. Since we 

focus on the design of a high performance FIR filter, the transposed direct form FIR filter is more appropriate 

for a high-performance filter structure. 

 

IV. Computation Sharing Multiplier Implementation 
 The Computation Sharing Multiplier (CSHM)[1,5] architecture and implementation, which is based on 

the algorithm is presented. CSHM consists of Precomputer Select Units And Adders (S&A). The precomputer 

produces the multiplication of alphabets with input x and the S&A performs the  add and shift operations 

required to obtain the final output.      

The main advantage of CSHM is that the outputs of precomputer are shared by all the select units. Hence, the 

operations performed by select units can be executed in parallel without introducing additional select unit delay. 

 The Booth Multiplier  and Wallace Tree Multiplier (WTM) is also implemented to compare these 

multipliers in terms of delay and area. In this design an 8x8 Computation Sharing Multiplier structure is been 

implemented. Depending on the length of the coefficient (W) select units will be selected. This CSHM 

algorithm is applicable to only unsigned multipliers. In this Computation Sharing Multiplier design, the fixed-

size look-up rule is used for different select and shift signal for different coefficient inputs. In the fixed size 

look-up multiplication, the maximum alphabet length L is fixed.  

 

  

                                                                 I/P (X) 

 

 

                                     Coefficient (C) 

 

 

 

 

 

 

 

                                          

                                                                  O/P(Y) 

 

Fig:2.2 : CSHM Structure 

 

 The coefficient input, the length of which is W, is divided in to W/L parts and each part consists of L 

bits. This implies that W/L should be an integer. Once L is determined, an alphabet set should be able to express 

any L bit number by one of its alphabet multiplied by the powers of 2 (shift operation). The add operations on 

these parts to generate the final result follow the shift operations. One possible alphabet set consists of odd 

numbers that are less than or equal to 2
L
-l. These numbers cover all the coefficients up to bits using only shift 

operations. With fixed value of L, these numbers from one of the alphabet sets with minimum cardinality. For 

instance, the alphabet sets obtained for L=2 and 4 are {1, 3} and {1, 3, 5, 7, 9, 11, 13, 15}, respectively. The 

advantage of the fixed size look-up rule is that much of the operation up to final additions can be performed in 

parallel. The computation sharing multiplier design with set to 4 provides adequate tradeoff between the number 

of addition and multiplication operations.  

Hence, we use the alphabet set {1, 3, 5, 7, 9, 11, 13, and 15} in our multiplication. 

 

V. CSHM Algorithm[1,5] 
 In vector scaling operations, select a set of small bit sequences so that the same multiplication result 

can be obtained by only add and shift operations. For instance, (1011).X can be decomposed as  2
0  

(0011).X + 

2
3
 (0001).X. If both (0011) X and X are available, the entire multiplication process is reduced to a few add and 

shift operations.  

The basic bit sequences are referred as alphabets. Also, an alphabet set is a set of alphabets that spans all the 

coefficients in vector C. The ith coefficient can be obtained in the same manner. It can be represented as  

L 

Ci = ∑ 2
m

k ∑k, j 

K= 0 

  Where mĸ is a shift value and  αk, j are alphabet that belong to the jth for k = 0, 1, 2 …L. alphabet set, for.  

BANK OF PRECOMPUTERS 

 

ADDERS 

 

SELECT 

UNITS 

 

 BANK OF PRECOMPUTERS 



Design of FIR Filter By Using   Sharing Multiplier with Low Delay 

www.irjes.com                                                    35 | Page 

   If we multiply the scalar X to both sides the multiplication   Ci..X can be expressed as 

L 

Ci. X = ∑    2
m

k ∑k, j. X 

K= 0 

Hence multiplication Ci. X can be significantly simplified to add and shift operations of    αk, j. X, which is 

multiplications of and all the elements of the predetermined alphabets. Since alphabets are small bit sequences, 

the multiplication of alphabets with the operand X can be done with out seriously compromising the 

performance.    

 

Coefficient Decomposition 

 Coefficient decomposition is done in order to identify the common computations. Depending on the 

selection of the alphabet set, the number of required add and shift operations changes. Obviously, an alphabet 

set should cover all the coefficients in coefficient vector C. As the number of coefficients in C increases, there 

can be many choices for alphabet sets on the coefficients and each alphabet set gives rise to a different 

combination of add and shift operations to obtain C.X. In addition, there are two other desirable characteristics 

of „good‟ alphabet set. First, total numbers of add operations should be minimized. Multiplication operation can 

be simplified to add and shift operations with the computation sharing multiplier algorithm.  

                 In the multiplier implementation, the add operations lie on the critical path and incurs the largest 

delay. Therefore, reduction of the number of adds operations improves overall performance. Second, the number 

of alphabets in alphabet set should be minimized. In the computation sharing Multiplier scheme, the multiplied 

value of   αk, j. X should be available before the decomposition. They are computed at the first stage. As the 

number of alphabets increase, the amount of the computations also increases, which results in large area and 

power consumption. It also increases delay due to large length of individual alphabet. Generally, these two 

properties conflict with each other. A larger set of possible decompositions is possible as the number of 

alphabets increases. Therefore, if the alphabets are selected properly, large number of alphabets give rise to less 

number of add operations. Likewise, the reduction in number of alphabets results in many adds operations. 

 

CSHM Architecture[1,5] 

 
Fig 2.2:Parallel 8x8 CSHM Architecture[1,5] 

 

 In this section, a parallel 8X8 CSHM structure based on the scheme is described. The bank of 

precomputer performs the computations αk. X, K = 0, 1, 2……….8. As a result, the outputs of the precomputer 
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bank are 1x, 3x, 5x, 7x, 9x, 11x, 13x and 15x. To find the correct alphabet, SHIFTERs perform the right shift 

operation until it encounters 1 and send an appropriate select signal to 8-to-1 (8:1) Muxes. It also sends the exact 

shifted values (shift signal) to ISHIFTER‟s. The   8-to-1 (8:1) Muxes select the correct alphabet among the eight 

values received from precomputer, ∑k. X, K = 0, 1, 2……….8. The ISHIFTER‟s simply inverse the operation 

performed by shifters. When the coefficient input is 0000, a zero output with the shifted value of the 

precompiled outputs is obtained.    

   

 Select and Shift Signal for Different Coefficient Inputs: 

 

Shifter Input    Select 

Signal 

    Shift 

Signal 

0000 Ddd Dd 

0001 000 00 

0010 000 01 

0011 001 00 

0100 000 10 

0101 010 00 

0110 001 01 

0111 011 00 

        1000 000 11 

1001 100 00 

1010 010 01 

1011 101 00 

1100 001 10 

1101 110 00 

1110 011 01 

1111 111 00 

 

 Simple AND gates are used to deal with zero (0000) coefficient input. SHIFTER- MUX (8:1) –

ISHIFTER – AND gate are referred as the select unit. The Upper Select Unit generates the multiplication of 4 

LSBs of the coefficient with the input x. The lower select unit produces the product of upper 4 bits with input x. 

A shift of the upper 4 bits is performed when those two values are fed to the adder. A simple adder produces the 

final result. Consider an example as shown in figure 4.2. If the coefficient is 11100100, it is divided in to two 

parts consisting of 4 bits. 0100 is fed to SHIFTER of the upper select unit and 1110 to that of the Lower Select 

Unit. In the upper select unit, SHIFTER shifts 0100to the right twice until it encounters 1 and it sends 000 

(select signal) to MUX (8:1), which chooses 1x among the precomputer outputs. SHIFTER also sends 10 (shift 

signal) to ISHIFTER. ISHIFTER shifts to the left input from the   MUX (8:1) 1x twice. Finally, output of 

ISHIFTER is 0100. In the lower select unit, SHIFTER shifts 1110 to the right once and sends 011 (select signal) 

to MUX (8:1), which chooses 111 x among the outputs of precomputer. Like the one in the upper select unit, 

SHIFTER sends 01 (shift signal) to ISHIFTER, which shifts 111x to the left once. the AND gates of both select 

units just pass their inputs.    The outputs of the upper select unit and the lower select unit are 0100x and 1110x, 

respectively. When these values reach the adder, 1110xshould be shifted four times to the left because it is the 

multiplication of the four MSBs. The precomputer, MUX (8:1), ISHIFTER AND gates, and ADDER lie on the 

critical path in this multiplier structure. The values for select and shift signal from SHIFTER for different 

coefficient inputs is shown in Fixed-size look up rule given in the table below. In the CSHM, when a coefficient 

is larger than 8 bits, additional select units will be added. The outputs of the precomputer are shared by all the 

select units and the operations performed by the select units are done in parallel. 
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VI. FIR Filter Implementation Using CSHM 
FIR Filter Implementation 

 

The computations αk.X, k = 0, 1, 2 …8, are performed only once for all k‟s and all filter taps and these values 

are shared by all the select units for generating Ci. X, i = 0, 1, 2 …8. In CSHM, precomputer delay is smaller 

than that of select units and adders. Only select unit and adder lie on the critical path. The SHIFTER delay is 

excluded from the critical path because the filter coefficient Ci is provided to the corresponding SHIFTER 

earlier than the input x. The proposed CSHM architecture has performance and power advantage  

through the additional pipelining and the sharing of the precomputer outputs by all the select units and adders.    

  

VII. Designing, Synthesis & Results 

 First, VHDL is used for circuit modeling. After checking logic function with Modelsim we synthesized 

and optimized the VHDL model. The results of delay, area of each multiplier is shown in the following 

graphical representations. Wallace tree multiplier has better performance than Computation Sharing Multiplier. 

The area and power of CSHM is larger than those of Booth Multiplier  and WTM. As, a single multiplier, 

CSHM is not practical because of the large power consumption and area. The advantage of CSHM can be 

maximized when it is applied to the FIR filtering operations. 
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Delay & Area of FIR Using CSHM 

 

 
 

VIII. Conclusion 
 In this work the architecture of computation sharing multiplier for high performance FIR filter is 

presented. A multiplication approach, which specially targets the reduction of redundant computation in FIR 

filtering. By, using a CSHM algorithm, the multiplications in the vector scaling operation can be significantly 

simplified to add and shift operations of alphabets multiplied by input x. These common computations can be 

shared by the sequence of operations in vector scaling operations. The performance of the CSHM is better than 

commonly used Booth Multiplier(BM) . Because when compare the CSHM with the already existing systems of 

BM(Delay of 26..642ns & area is 180 LUTS) and WTM (13.92ns and146 LUTS) the delay is lesser one of 

(18.641ns) and area occupied by this multiplier is of (169 LUTS).FIR filter implementation based on the 

proposed scheme shows higher performance and comparable Area with FIR filters based on BM and WTM. The 

CSHM scheme exhibits better power delay than other multiplier schemes. CSHM scheme leads to higher 

performance in filtering operation with out incurring large register overhead. The FIR structure based on CSHM 

can also be used in adaptive filter application. The idea behind in this work can assist design of DSP algorithms 

and their implementation for high-speed application.    

 

VIIII.    Future Scope 
      In this work the heart of the Finite Impulse Response Filter is the Computation Sharing Multiplier. In 

the multiplier the multiplexer used to be of size equal to 8:1, which is for the selection of outputs from the 

Precomputer block. If the coefficient length is more than 8 bit at that time the multiplexer size must be more 

than 8:1. That implementation going to deals with more delay, power consumption and area. 
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