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Abstract:-In the existing quantum-behaved optimization algorithms, almost all of the individuals are encoded 

by qubits described on plane unit circle. As qubits contain only a variable parameter, quantum properties have 

not been fully embodied, which limits the optimization ability rise further. In order to solve this problem, this 

paper proposes a quantum ant colony optimization algorithm based on Bloch sphere search. In the proposed 

algorithm, the positions of ants are encoded by qubits described on Bloch sphere. First, the destination to move 

is determined according to the select probability constructed by the pheromone and heuristic information, then, 

the rotation axis is established with Pauli matrixes, and the evolution search is realized with the rotation of 

qubits on Bloch sphere. In order to avoid premature convergence, the mutation is performed with Hadamard 

gates. Finally, the pheromone and the heuristic information are updated in the new positions of ants. As the 

optimization process is performed in n-dimensional hypercube space [−1, 1]
n
, which has nothing to do with the 

specific issues, hence, the proposed method has good adaptability for a variety of optimization problems. The 

simulation results show that the proposed algorithm is superior to other quantum-behaved optimization 

algorithms in both search ability and optimization efficiency. 
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I. INTRODUCTION 
 At present, colony intelligence optimization algorithms have been widely studiedby many scholars, and 

have obtained the successful applications [1]. Quantum-behavedoptimization algorithm is an emerging 

interdisciplinary based on combinationof quantum computing and information science. In 1996, Ajit et al 

proposedquantum-inspired genetic algorithms [2], where concepts and principles of quantum mechanics were 

used to inform and inspire more efficient evolutionary computing methods. After this, quantum intelligent 

optimization quickly became a hot international research. Beginning of this century, Han et al proposed several 

quantum genetic algorithms [3-5]. Compared with the traditional evolutionary algorithm, the advantage of Han’s 

algorithms is a better ability to maintain population diversity. In 2004, Hichem et al presented a new algorithm 

for solving the traveling salesman problem [6], which extended the standard genetic algorithm by combining 

them to some concepts and principles provided from quantum computing field such as qubits, states 

superposition and interference. Many quantum behaved optimization algorithms proposed later may be regarded 

as improvements of the above-mentioned algorithms [7-11]. In 2009, Balicki proposed an adaptive quantum-

based multi-objective evolutionary algorithm where the crossover probability is decreased due to the number of 

new generations [12]. It is an advanced technique for finding Pareto-optimal task allocation problem with the 

maximization of the system reliability and distributed system performance. In addition, for the combination of 

quantum computation and neural networks, Perus presented an analogous quantum information processing 

system called a quantum associative network [13]. It is expected that successful quantum implementation of the 

model would yield many benefits. In 2010, we proposed an improved design for CNOT gated quantum neural 

networks model and presented a smart algorithm for it [14]. The experimental results shown that our model has 

more superior performance to the standard error back-propagation networks. 

It is clear that, first, in the majority of quantum-behaved optimization algorithms, all individuals are 

encoded by qubits described on the plane unit circle. Because this description has only an adjustable parameter, 

quantum properties have not been fully reflected. Secondly, almost all of evolution and mutation used quantum 

rotation gates and quantum NOT gates. These operations only change a parameter of qubit, therefore, quantum 

properties are weakened. In 2008, we proposed a quantum-inspired evolutionary algorithm for continuous space 

optimization based on Bloch coordinates of qubits [15]. This algorithm adopted the qubits’ Bloch spherical 

coordinate coding, had two adjustable parameters, and showed some good optimization performances. However, 

in this algorithm, the best matching of two adjustments was not achieved, which affected the optimization 

ability to further improve. Based on the above problems, we select ant colony optimization as a starting point, 
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and then propose a quantum ant colony optimization algorithm based on Bloch spherical search (BQACO). 

Unlike traditional ant colony optimization, in our algorithm, ants release pheromone not on the paths but on the 

current resident points. The individuals are directly encoded by qubits. This algorithm uses Pauli matrices to 

establish the rotation axis, uses qubit’s pivoting to achieve ant’s movement, and uses the Hadamard gates to 

achieve mutation. This search approach can simultaneously adjust two parameters of qubits, and can 

automatically achieve the best matching of two adjustments. In search process, the positive feedback is formed 

by sharing in pheromone. Along with the algorithm running, some pheromone trails can be seen leading to the 

global optimum solution in the optimization space. With the typical function extremum optimization and the 

fuzzy controller parameters optimization, and comparison with other algorithms, the experimental results verify 

the effectiveness of the BQACO. 

 

II. THE BASIC PRINCIPLES OF BQACO 
2.1 The spherical description of qubits 

 In quantum computing, a qubit is a two-level quantum system, described by a twodimensional 

complex Hilbert space. From the superposition principles, any state of the qubit may be written as 

follows 

 1|
2

cos0|
2

cos| i  eφ (1) 

where  0 ,  20  , i∗ is the imaginary unit. 

Therefore, unlike the classical bit, which can only be set equal to 0 or 1, the qubit resides in a vector space 

parametrized by the continuous variables θ and ϕ . Thus, a continum of states is allowed. The Bloch sphere 

representation is useful in thinking about qubits since it provides a geometric picture of the qubit and of the 

transformations that one can operate on the state of a qubit. Owing to the normalization condition, the qubit’s 

state can be represented by a point on a sphere of unit radius, called the Bloch sphere. This sphere can be 

embedded in a three-dimensional space of Cartesian coordinates(  sincosx ,  sinsiny , cosz ). 

Thus the state φ|  can be written as follows 
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By definition, a Bloch vector is a vector whose components (x, y, z) single out a point on the Bloch shpere. We 

can also say that the angles θ and ϕ  define a Bloch vector, as shown in Fig.1. 

 
Fig.1 Bloch-sphere representation of a qubit. 

 

2.2 The BQACO encoding method 

 In BQACO, all ants are encoded by qubits described on Bloch sphere. Set the colony size to m, and the 

space dimension to n. Then the ith ant is encoded as follows 

]|,,|,[| 21  iniii φφφp  (3) 

where
i| [cos | 0 , cos |1

2 2
e  

   φ denotes the characteristic length of the delta potential well. 

z 

P 



 

  

|  

x 

y 



Quantum ant colony optimization algorithm based on Bloch spherical search 

www.irjes.com                                                                43 | Page 

As the optimization process is performed in n-dimensional hypercube space[−1, 1]
n
, which has nothing to do 

with the specific issues, hence, the proposed method has good adaptability for a variety of optimization 

problems.  

 

2.3 Projective measurement of ant position 

 From the principles of quantum computing, the coordinates x, y, and z of a qubiton the Bloch sphere 

can be measured by using the Pauli operators written in thecomputational basis as follows 
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Let ijφ| denote the 
thj qubit on the 

thi ant. The coordinates ( , , )ij ij ijx y z  of ijφ|  can be obtained by the 

follows equations 
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2.4 Solution space transformation 

 In BQACO, each ant in colony contains 3n Bloch coordinates of n qubits that can be transformed from 

hypercube space [−1, 1]n to solution space of the continuous optimization problem. Each of Bloch coordinates 

corresponds to an optimization variable in solution space. Let the
thj variable of optimization problem

x [ , ]j j jA B  and ( , , )ij ij ijx y z denote the coordinates of the
thj qubit on the 

thi  ant. Then the corresponding 

variables ( , , )ij ij ijx y z  in solution space are respectively computed as follows 
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where mi ,,2,1  ， nj ,,2,1  。 

 

2.5 Selecting target position of ant moving 

 Suppose )( rx denote the pheromone of point rx held by the ant
thr which is a constant in the 

beginning of the optimization, and )( rx denote the heuristicinformation of point rx which its meaning 

is similar to the pheromone of point rx and it is also set to a constant in the beginning of the 

optimization. The rules ofthe 
thr ant moving from rx to sx is described as follows 
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where α and β are parameters controlling the relative importance between ( )ix  and ( )ix , q  is a 

random number uniformly distributed in (0,1), 0q  is a pre-specified parameter (0 < 0q < 1) used to 

switch two select ways, x  is the set of points held by ant colony in solution space
1[ , ]n

j j jA B . 

 

2.6 The ant movement to target position 
 In BQACO, we realize research on Bloch sphere. Namely, make qubit  on the Bloch sphere 

rotate to the target around a fixed axis. This approach can simultaneously adjust two parameters θ and ϕ , 

and can automatically achieve the best matching of two adjustments, which can enhance optimization 

efficiency. Let rx denote a ant’s current position, and sx denote its target position. 

 

]|,,|,[| 21  rnrrr φφφx      (13) 

]|,,|,[| 21  snsss φφφx   (14) 

To make the ant move from rx to sx , The determination of rotation axis and rotation angle is crucial, 

which can directly impact on convergence speed and efficiency of algorithm. For rotation axis, we 

propose the following method for determining. 

Theorem 1 Let the vectors ],,[ zyx pppP and ],,[ zyx qqqQ denote respectively qubits P  and Q on 

Bloch sphere, then, the axis of rotating qubit from P  and Q can be written as follows 

QPR axis (15) 

Proof  In the sphere, the shortest distance between two points is defined as the length of minor arc on 

the great circle through these two points. To make P  approximate to Q  after rotating, we should make 

P  rotate along with the minor arc on the great circle. From QPR axis , we know that the direction of 

axisR  is perpendicular to the plane consisted of the vector P  and Q , and the direction of these three 

vectors meet to the right-hand rule. Namely, right hand four fingers grip from point P  to point Q  with 

angle less than π, at this time, the direction of thumb is defined as the direction of axisR . the relation of 

these three vectors is shown in Fig.2. Therefore, if let P  rotate around axis axisR , then its path will be 

the minor arc on great circle through points P  and Q . Hence, the rotation axis is QPR axis . 

 
Fig.2 The rotation axis of qubit on Bloch sphere 

Let O denote the centre of Bloch sphere, and points P  and Q  on Bloch sphere denote respectively 

qubits rjφ| and sjφ| . According to the above theorem, the rotation axis of rotating rjφ|  to sjφ|  can be 

written as follows 
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From the principles of quantum computing, on Bloch sphere, the rotation matrix through an angle δ 

about unit vector ],,[ zyx nnnn  is defined as follows 
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where ],,[ zyx σσσσ   

Hence, on Bloch sphere, the rotation matrix through an angle δ about the axis axisR  of rotating the 

current qubit rjφ|  to the target qubit sjφ|  can be written as follows 
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where the rotation angle  05.0 . 

The rotation operation of rotating the current qubit rjφ|  to the target qubit sjφ|  can be written as 

follows 

 )(|)()1(| kk rjrj axis
φMφ R    (19) 

where mr ,,2,1  ， nj ,,2,1  ， k  is the iterative step. 

For each ant in colony, the move method describes as follows. For each qubit in the current position, 

determine the rotation axis according to the corresponding qubit in target position, perform rotation 

around axis so that achieve the movement of this ant. By the above method, all the ants’ positions are in 

turn updated so that complete the entire colony update.  

 

2.7 The mutation of ant position 

 In order to increase colony diversity and prevent premature convergence, a variety of 

evolutionary algorithms introduce mutation. Most of the current quantum evolutionary algorithm use the 

quantum NOT gate (namely, Pauli metrix xσ ) to perform the mutation, in which two probability 

amplitudes are exchanged, and only one parameter is changed. In BQACO, we propose a new mutation 

based on Hadamard gate whose a possible description is defined as follows  
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This gate is an important unitary operator in quantum computing, it can be written as the linear 

combinations of two Pauli matrices, and has the following property.  
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From this equation it is clear that the Hadamard gate is a rotation through an angle δ = π about the axis 


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For each ant in colony, first generate a random number, if the number is less than the mutation 

probability, then randomly selecte a qubit of this ant, and apply Hadamard gate to perform its mutation.  

 

2.8 The update rules of pheromone and heuristic information 

 For the optimization problem, we always hope to find such a point not only with a high fitness 

but also with a faster rate of fitness change, which can stride in the search process instead of roaming in 

the flat places. Based on this concept, in BQACO, the idea of pheromone updating is to add the fitness 

value of the current ant position to pheromone, which makes the better position hold the greater 

pheromone. The idea of heuristic information updating is to add the fitness change to heuristic 

information, which makes the position with the faster fitness change hold the greater heuristic 

information. In fact, in our approach, the fitness change is regarded as heuristic information. After all 

ants finish a step search, we compute the fitness and its change for ants’ new position,  and update the 

pheromone and heuristic information according to the following equations. Let qx  denote the ant’s 

previous position, rx  denote the ant’s current position, and sx denote the ant’s target position. Local 

update rules as follows 
 fitss  )()1()( xx   (22) 

 ||)()1()( fitss  xx   (23) 
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)()( rs fitfitfit xx       (24) 

where 10    and 10    denote the update index of pheromone and heuristic information, 

respectively, 10    denotes the update coefficient of pheromone and heuristic information, 1  

denotes the evaporation coefficient, and t denotes the current iteration steps. 

 The global update of pheromone and heuristic information is performed after all ants finish a step 

search according to the following equation. 
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where x  denotes the optimal solution in current colony and t denotes the current iteration steps. 

The design of fitness function usually depends on the specific optimization problem. For maximum 

optimization of the object function F, the fitness function may be defined as )exp(Ffit  , and for 

minimum optimization of the object function F, the fitness function may be defined as )exp( Ffit  . 

 

2.9 Population assessment and the optimal solution update 

Substituting three solutions ijX , ijY , ijZ  described by the ith ant into the fitness function, respectively, 

we may compute its fitness. Let bestgfit  denote the best fitness so far, and bestgp  denote the 

corresponding best ant, ))()(),(max()( iiii ZfitYfitXfitpfit  , ))((max
1

i
mi

best pfitfit


 ,  if bestbest fitgfit 

then bestbest fitgfit  , bestbest pgp  . 

 

III. THE IMPLEMENTATION SCHEME OF BQACO 
Step1 Ant colony initialization. Include: colony size m , space dimension n , rotation angle δ, mutation 

probability mp , iterative steps G , pheromone update index  , heuristic information update index  , 

evaporation coefficient 1 . According to equation (3), generate the initial colony, and initialize each 

ant’s pheromone and heuristic information to a constant. Set the current iterative step 0t . 

Step2 For each ant, select the target position according to Eqs.(11), compute the rotation axis according 

to Eq.(14), compute the rotation matrix according to Eq.(17), rotate qubit according to Eq.(18) to 

achieve ant move. Mutate ant by Hadamard gates according to mutation probability. 

Step3 Derive the ants’ positions by means of projective measurements Eqs.(5 -7), perform solution space 

transformation according to Eqs.(8-10), compute the fitness of each ant and its change. 

Step4 Perform the local update and the global update of pheromone and heuristic information according 

to Eqs.(21-25). 

Step5 Perform the global maximum solution update, set 1 tt , if Gt   then save the optimization 

results and stop, else go back to step2. 

 

IV. COMPARATIVE EXPERIMENT 
 To verify the effectiveness of the BQACO, we design the two experiments. In these experiments, 

we implemented and evaluated the proposed method in Matlab (Version 7.1.0.246) on a Windows PC 

with 2.19 GHz CPU and 1.00 GB RAM, and we also compared BQACO with double chains quantum 

genetic algorithm(DCQGA) in Ref.[11] and Bloch quantum-inspired evolutionary algorithm (BQEA) in 

Ref.[15]. 

 

4.1 Function extremum optimization 

 For function extremum optimization, there already exists a lot of benchmark test functions. In 

this section, we select the following four typical 2-dimension functions as simulation objects. These four 

functions are complex and there exist a number of local extreme points in their domain of definition, 

which the performance of different algorithms can be investigate by these functions.  

(1) Shaffers F5 function 
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This function has multiple local maximum points, and the global maximum point is ( -32,-32), the global 

maximum is 1.002. When the optimization result is greater than 1.000, the algorithm is considered 

convergence. 

(2) Shubert function 
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where ]10,10[, yx . This function has 760 local minimum points, and the global minimum is -

186.73090882259. This function can easily fall into local minimum -186.34. When the optimization 

result is less than -186.34, the algorithm is considered convergence. 

(3) Branin function 
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where ]15,0[x , ]10,5[y .This function has a global minimum 0.3979, and a local minimum 0.4004 

that is very close to the global minimum. When the optimization result is less than 0.4000, the algorithm 

is considered convergence. 

(4) Camel function 
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where x, y ∈ [−10, 10]. This function has a global maximum 1.031628. When the optimization result is 

greater than 1.000, the algorithm is considered convergence.  

For the above four functions, we use respectively BQACO, DCQGA, BQEA to perform optimization. In 

order to reflect the fairness of comparing results, three algorithms use the same colony size, mutation 

probability, rotation angle, and iterative steps. These parameters are set as: colony size m = 20, space 

dimension n = 2, iterative steps G = 100, pre-specified parameter 8.00 q , evaporation coefficient 1 −  

ρ = 0.5, pheromone update index α = 0.5, heuristic information update Index β = 0.5, rotation angle δ = 

0.01π, mutation probability 001.0mp . 

In order to manifest the objectivity of the comparison results, for the above four functions, we use each 

algorithm to optimize 1000 times, and record convergence times, average iterative steps, average results, 

and variance of results. For the case of convergence, we also record the times tha t converges to X 

solutions, Y solution, and Z solutions, respectively. The experimental results are shown in Tables 1 -4. 

For the Shaffers F5 function, after it is optimized by BQACO, the pheromone distribution in solution 

space is shown in Fig.3. 

 
TABLE I.  THE OPTIMIZATION RESULTS OF SHAFFER’S F5 

Alg. Con. times Avg. steps Avg. Results Variance 

BQACO 784 66.1220 0.8970 0.0502 

BQEA 723 68.7330 0.9044 0.0473 

DCQGA 328 89.2410 0.7534 0.1024 
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TABLE II.  THE OPTIMIZATION RESULTS OF SHUBERT 

Alg. Con. times Avg. steps Avg. Results Variance 

BQACO 944 61.6470 -186.4801 0.1860 

BQEA 543 76.5250 -186.0720 0.7106 

DCQGA 334 87.1210 -184.8086 56.1972 

TABLE III.  THE OPTIMIZATION RESULTS OF BRANIN 

Alg. Con. times Avg. steps Avg. Results Variance 

BQACO 996 49.8420 0.3990 8,6e-007 

BQEA 826 58.9750 0.3995 2.5e-006 

DCQGA 489 80.0120 0.4018 7.8e-005 

TABLE IV.  THE OPTIMIZATION RESULTS OF CAMEL 

Alg. Con. times Avg. steps Avg. Results Variance 

BQACO 999 36.5520 1.0143 7.2e-004 

BQEA 947 44.6050 1.0109 2.1e-003 

DCQGA 658 75.8260 -8.5867 1.2e-004 

 

 
Fig.3 The pheromone distribution of Shaffers F5 

 

 It can be seen from tables 1-4 that, for the above four functions, three algorithms have the same 

sort in the optimization ability, from high to low in turn for BQACO, BQEA, DCQGA. These results can 

be analyzed as follows. 

 For DCQGA, individual’s coding is based on the qubit described in unit circle. Because of only 

one adjustable parameter, quantum behavior can not be fully reflected. Hence, in the three algorithms, 

its optimization ability is the lowest. 

 For BQEA, because individual’s coding is directly based on the Bloch coordinates of qubits, 

which transform the description of qubit from the unit circle to the Bloch sphere and fully reflect the 

quantum behavior, the search ability is effectively improved, which result in the optimization efficiency 

is obviously superior to that of DCQGA. In BQEA, because the two parameters θ and φ of a qubit are 

respectively adjusted, the best matching of two adjustment need to be considered. However, in BQEA, 

this best matching is ignored. In other words, when the current qubit moves toward the target qubit, the 

path is not the shortest. 

 For BQACO, ants’ coding directly based on qubits described on the Bloch sphere, by means of 

projection measurement, the Bloch coordinates of qubits can be easily obtained. Therefore, BQACO 

have all advantages of BQEA. In addition, particularly noteworthy that, in BQACO, two parameters θ 

and φ of a qubit can be simultaneously adjusted by means of rotating the current qubit through an angl e 

δ about the rotation axis. This rotation method can automatically achieve the best matching of two 

adjustments. In other words, when the current qubit moves toward the target qubit, the path is the minor 

arc on the great circle, which is clearly the shortest. Obviously, this rotation with the best matching of 

two adjustments has a higher optimization efficiency. So BQACO is more efficient than BQEA, and it 

also is the most efficient in three algorithms. The above analysis is consistent with the experiment al 

results. 
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4.2 Fuzzy controller parameters optimization 

 In the fuzzy control system, the performance of the controller has a significant impact on the 

performance of system. Fuzzy controller performance to a large extent depends on the fuzzy control 

rules and its scalability. Therefore, we can introduce an adjustable parameter to adjust the control rules, 

so that the controlled object can obtain satisfactory control performance. This is the design problem of 

the fuzzy controller with a group of adjustable fuzzy rules. In this kind of fuzzy controller design, the 

control action depends on the error and error change. To adapt to different requirements of the 

controlled object, by introducing an adjustment factor, we may obtain a kind of fuzzy control rul e with 

analytical description as follows 

）（ 1,0,)1(   ECEu (31) 

By adjusting the size of α, we can achieve varying degrees of weighting error and error change. When 

the error is large, the main control task is to eliminate error, at this time, we shoul d increase the error’s 

weighting. On the contrary, when the error is small, the main control task is to reduce the overshoot in 

order to stabilize the system as soon as possible. Therefore, in the different error levels, need to 

introduce different weighting factors in order to achieve self-adaptive adjusting of control rules. Taking 

the following second-order system for the controlled object, and using the step signal as input, we 

investigate the optimization ability of BQACO. 
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The domain of error, error change, and control size is selected as 

}3,2,1,0,1,2,3{}{}{}{  uECE . Taking into account the fuzzy control system in different 

system states should have different requirements for the control parameter  α, in this experiment, the α is 

divided into three levels. 
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Therefore, this study need to optimize the six fuzzy controller parameters such as quantization factor ke ,

kc , scale factor k u , adjustment factor 1 , 2 , 3 . With help of the ITAE integral performance index, 

the evaluation function is designed as follows 

)ITAE(

1

Ja
f


     (34) 

where J(ITAE) =
0

| ( ) |t e t dt


 , a denotes a small positive number so that the denominator is not zero.  

According to experience, the initial scopes of six controller parameters are given by )4.0,0(1 ,

)8.0,4.0(2 , )0.1,8.0(3 , )10,0(,, kukcke . These six parameters are respectively optimized by three 

algorithms. The colony size m = 15, space dimension n = 6, iterative steps G = 50, the other setting is 

the same as the previous experiment. The optimization results of three algorithms are shown i n Table 5, 

the ITAE performance comparisons are shown in Fig.4, and the system response for step signal input 

under the control action of three fuzzy controllers optimized by three algorithms are shown in Fig.5.  

 

TABLE V.  OPTIMIZATION RESULTS CONTRAST OF FUZZY CONTROLLER PARAMETERS 

Alg. Ke Kec Ku 
1  

1  
1  J(ITAE) 

BQACO 4.5036 2.7263 9.9703 0.2468 0.4769 0.9194 3.9503 

BQEA 4.2562 3.7794 4.1931 0.3712 0.5059 0.9967 5.4465 

DCQGA 6.1607 5.6757 6.2983 0.0751 0.4728 0.8917 4.8329 
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Fig.4 ITAE integral index comparison. 

 

 

 
Fig.5 Tracking response curve comparisons of Fuzzy controllers.  

 

 Table 5 shows that, in the same colony size and iterative steps, the BQACO’s J(ITAE) is the 

smallest, followed by BQEA and DCQGA. From Fig.4, it is clear that the BQACO has obtained the 

minimum 3.9503 after about 20 iterative steps, while, the BQEA and DCQGA have respectively 

obtained 4.8329 and 5.4465 after 50 iterative steps. Fig.5 shows that, the contro ller optimized by 

BQACO has a faster tracking speed and a less tracking time than that optimized by BQEA and DCQGA, 

which shows that BQACO obtains more excellent controller parameters combination than BQEA and 

DCQGA, and makes the fuzzy controller have the excellent control performance. The experimental 

results show that the optimization ability of BQACO indeed better than that of BQEA and DCQGA. 

These results can be explained as follows. 

 For DCQGA, qubit contains only one adjustable parameter while qubit contains two adjustable 

parameters for BQEA and BQACO. Hence, quantum behavior of DCQGA can not be fully reflected, and 

its optimization ability is inferior to that of BQEA and BQACO. 

 For BQEA, the Bloch coordinates of qubits are directly used for individ ual’s coding which the 

quantum behavior is fully reflected, and the search ability is effectively improved. Hence, its 

optimization efficiency is obviously superior to that of DCQGA. However, the two parameters θ and φ 

of a qubit are respectively adjusted and the best matching of two adjustment is ignored, which limits the 

optimization capabilities to further improve. 

 For BQACO, its qubits are described on the Bloch sphere and are directly used for coding 

individuals. Using the Pauli matrices, it is easy to obtain the Bloch coordinates of qubits. Hence, 

BQACO have all advantages of BQEA. On the other hand, two parameters θ and φ of a qubit can be 

simultaneously adjusted by means of rotation matrix, and this rotation can automatically achieve the best 

matching of two adjustments, which make BQACO more efficient than BQEA. 
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V. CONCLUSIONS 
 This paper presents a quantum ant colony optimization algorithm based on Blochsphere search. The 

experimental results reveal that the coding method based onqubits described on Bloch sphere can better simulate 

the quantum behavior, the search method based on qubits’ rotating around axises can improve search efficiency, 

and the integration of the following three aspects of ant colony optimization, coding method based on qubits 

described on Bloch sphere, and qubits rotating around axises on Bloch sphere, can really improve the 

optimization ability of the ant colony optimization algorithms. The advantages and disadvantages of the Bloch 

spherical search and the integration of this search method with other intelligent optimization algorithms are two 

issues which we need to study in future. 
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