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Abstract:- This special class of a nonlinear mathematical programming problem which is addressed in this 

paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear 

and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, 

combined with the “active constraint” method and the notion of superbasics, has been developed for efficiently 

tackling the problem. After solving the problem by ignoring the integrality requirements, this strategy is used to 

force the appropriate non-integer basic variables to move to their neighborhood integer points. A study of 

criteria for choosing a nonbasic variable to work with in the integerizing strategy has also been made. 

Successful implementation of these algorithms was achieved on various test problems. The results show that the 

proposed integerizing strategy is promising in tacking certain classes of mixed integer nonlinear programming 

problems. 

 

Keywords:- Nonlinear programming, active constraints, direct search, integer programming, neighbourhood 

search 

 

I. INTRODUCTION 
Many decision problems in scientific, engineering and economic application involve both discrete 

decisions and nonlinear system dynamics that affect  the quality of final design or plan. These type of problem 

can be modeled as mixed integer nonlinear programming problems (MINLP)  

Mathematically, this problem is defined by the following model. 

 min 𝑧 = 𝑐𝑇𝑦 + 𝑓 𝑥       (1) 

                    s.t.  𝑕 𝑥 ≤ 0      (2) 

  𝑔 𝑥 + 𝑏𝑦 ≤ 0      (3) 

                       𝑥 ∈ 𝑋 ⊂ ℝ+
𝑛 , 𝑦 ∈ 𝑅 ⊂ ℝ+

𝑛       (4) 

Where 𝑓: ℝ𝑛 → ℝ and 𝑕: ℝ𝑛 → ℝ𝑝 , 𝑔: ℝ𝑛 → ℝ𝑞  are continuous and generally well-behaved function 

defined on the n-dimensional compact polyhedral convex set 𝑋 =  𝑥: 𝑥 ∈ ℝ𝑛 , 𝐴1𝑥 ≤ 𝑎1 ; 𝑈 =
 𝑦: 𝑦 ∈ 𝑌, integer 𝐴2𝑦 ≤ 𝑎2  is a discrete set, say the nonnegative integer points of some convex polytope, 

where for most applications Y is the unit hypercube 𝑌𝜀{0, 1}𝑚 . 𝐵, 𝐴1, 𝐴2, and 𝑐, 𝑎1, 𝑎2 are respectively 

matrices and vectors of comfortable 

There are various applications for the MINLP model, including the process industry and the financial  

engineering, management science and operations research sectors. It includes problems in process flow sheets, 

portfolio selection, batch processing in chemical engineering (consisting of mixing, reaction, and centrifuge 

separation), and optimal design of gas or water transmission networks. Other areas of interest include the 

automobile, aircraft, and VLSI manufacturing areas. An impressive collection of MINLP applications can be 

found in [9] and [10]. The needs in such diverse areas have motivated research and development in MINLP solver 

technology, particularly in algorithms for handling large-scale, highly combinatorial and highly nonlinear 

problems. 

Methods for solving MINLPs include innovative approaches and related techniques taken and extended 

from MIP, such as, Outer Approximation (OA) methods [5,7,10], Branch-and-Bound (B&B) [1,11,16], 

Extended Cutting Plane methods [19], and Generalized Bender’s Decomposition (GBD) [8] for solving MINLPs 

have been discussed in the literature since the early 1980’s. These approaches generally rely on the successive 

solutions of closely related NLP problems. For example, B&B starts out forming a pure continuous NLP 

problem by dropping the integrality requirements of the discrete variables (often called the relaxed MINLP or 

RMINLP). Moreover, each node of the emerging B&B tree represents a solution of the RMINLP with adjusted 

bounds on the discrete variables.  
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Heuristic approaches to solving MINLPs include Variable Neighbourhood Search [13], automatically 

tuned variable fixing strategies [2], Local Branching [14], feasible neighbourhood search [14], Feasibility Pump 

[3,4,6], heuristics based on Iterative Rounding [15]. Recently [12] propose a MINLP heuristic called the 

Relaxed-Exact-Continuous-Integer Problem Exploration (RECIPE) algorithm. The algorithm puts together a 

global search phase based on Variable Neighbourhood Search [13] and a local search phase based on a MINLP 

heuristic. In heuristic approaches, however, one of the main algorithmic difficulties connected to MINLPs is to 

find a feasible solution. From the worst-case complexity point of view, finding a feasible MINLP solution is as 

hard as finding a feasible Nonlinear Programming solution, which is NP-hard [14]. 

Due to the fact that the functions in MINLPs are not smooth, therefore in this paper we use a direct 

search method, known as unconstrained optimization techniques that do not explicitly use derivatives. More 

information regarding to direct search method in optimization can be found in [19]. 

In this paper we address a strategy of releasing nonbasic variables from their bounds, combined with 

the “active constrained” method and the notion of superbasic for efficiently tackling a particular class of MINLP 

problems.  

The rest of this paper is organized as follows. In Section 2 we give a brief notion of solving nonlinear 

programming problem.. The basic approach of the proposed method is presented in Section 3. How to derive the 

proposed method is given in Section 4. The algorithm is presented in Section 5. Section 6 addresses a 

computational experience. The conclusions can be found in Section 7.  

 

II. SOLVING NONLINEAR PROGRAMMING 
In many real-world problems it turns out that most of the variables are linear and only a small 

percentage of the variables are involved nonlinearly in the objective function and/or in the constraints. 

Therefore, the standard problem may be expressed in the form 

    Minimize ∶       F 𝑥 + 𝑑𝑇𝑦            (5) 

    subject to   𝑓 𝑥 + 𝐴1𝑦 = 𝑏1𝑚1  𝑟𝑜𝑤𝑠        (6) 

    𝐴2𝑥 + 𝐴3𝑦 = 𝑏2𝑚2    𝑟𝑜𝑤𝑠                            (7) 

     𝑙 ≤  
𝑥
𝑦 ≤ 𝑢   𝑚 = 𝑚1 + 𝑚2             (8) 

where 𝑓 𝑥 =  𝑓1 𝑥 , … , 𝑓𝑚1 𝑇 ,  and it is assumed that the functions F 𝑥  and 𝑓(𝑥) are twice continuously 

differentiable. There are two types of variables involved in the problem, viz., 

1. The  𝑛1“nonlinear” variable x which occur nonlinearly in either the objective function 

F 𝑥 or the first 𝑚1constraints. 

2. The  𝑛2  “linear” variables 𝑦, 𝑛 = 𝑛1 + 𝑛2 , which, generally, will include a full set of m slack 

variables so that the equality and inequality constraints can be accomodated in (6) and (7) by 

appropriate bounds in (8). 

The algorithm proceeds by conducting a sequence of “major iterations”. At the start of each major 

iteration, the nonlinear constraints are linearized at some base point 𝑥𝑘  and the nonlinearities are adjoined to the 

objective function with Langrange multipliers. Define  

   𝑓  𝑥, 𝑥𝑘 = 𝑓 𝑥𝑘 + 𝐽 𝑥𝑘  𝑥 − 𝑥𝑘                       (9) 

where 𝐽𝑘 =  𝐽(𝑥𝑘) 𝑖𝑗 = 𝜕𝑓 𝑖/𝜕𝑥𝑗   is the Jacobian matrix of first partial derivatives of the constraint functions. 

We solve the following linearly constrained sub-problem a the kth major iteration. 

 Minimize𝑥,𝑦   L 𝑥, 𝑦, 𝑥𝑘 , 𝜆𝑘 , 𝜌 = 𝐹 𝑥 + 𝑑𝑇𝑦 − 𝜆𝑘
𝑇 𝑓 − 𝑓  +

1

2
𝜌 𝑓 − 𝑓  

𝑇
)(𝑓 − 𝑓 )         (10) 

 Subject to  𝐽𝑘𝑥 + 𝐴1𝑦 = 𝑏1 + 𝐽𝑘𝑥𝑘 − 𝑓 𝑥𝑘          (11) 

       𝐴2𝑥 + 𝐴3𝑦 = 𝑏2          (12) 

         𝑙 ≤  
𝑥
𝑦 ≤ 𝑢               (13) 

The objective function (10) is a modified augmented Lagrangian, where the penalty parameter 

𝜌enhances the convergence properties from initial estimates far removed the optimum. The Lagrange multiplier 

estimates 𝜆𝑘  are taken as the optimal values at the solution of the previous subproblem. As the sequence of 

major iterations approaches the optimum (as measured by the relative change in successive estimates of  𝜆𝑘  and 

the degree to which the nonlinear constraints are satisfied at 𝑥𝑘 ) the penalty parameter 𝜌 is reduced to zero and 

a quadratic rate of convergence of the subproblem is achieved. 

The linearly constrained subproblem contains matrix equations in the form of 𝐴𝑥 = 𝑏 in which we 

may partition the variables by introducing the notion of superbasic  variables as follows: 
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     A𝑥 =  𝐵 𝑆 𝑁  

𝑥𝐵

𝑥𝑆

𝑥𝑁

 = 𝑏             (14) 

The 𝑚𝑚 “basis” matrix B is square and nonsingular and its columns correspond to the basic variables (𝑥𝐵). 

The r columns of N correspond to the nonbasic variables (𝑥𝑁) (provided there are r variables fixed on their 

bounds). The matrix S, with n-m-r columns, correspond to the remaining variables which are called superbasic 

variables (𝑥𝑆). Following Eqn (14), the active contraints may be presented as 

    𝐴 𝑥 =  
𝐵 𝑆 𝑁

𝐼
  

𝑥𝐵

𝑥𝑆

𝑥𝑁

 =  
𝑏
𝑏𝑁

        (15) 

thereby 

    𝐵𝑥𝐵
+ 𝑆𝑥𝑆

+ 𝑁𝑥𝑁
= 𝑏            (16) 

              𝑥𝑁 = 𝑏𝑁                (17) 

where 𝑏𝑁 is some combination of upper and lower bounds. 

Expression (17) indicates that the nonbasic variables are being held equal to one or other of their 

bounds and stay there for the next step ∆𝑥. The superbasic variables 𝑥𝑆   are free to move in any direction and 

provide the driving force to minimize the function, while the basic variables 𝑥𝐵  must follow to satisfy the 

equation 

                        𝐵∆𝑥𝐵
+ 𝑆∆𝑥𝑆

  = 0            (18) 

Thus ∆𝑥  can be written in terms of the change in superbasic variables as follows 

                         ∆𝑥= 𝑍∆𝑥𝑆
       (19) 

where 

𝑍 =  
−𝐵−1𝑆

𝐼
0

  

 The matrix Z serves as a “reduction” matrix and pre-multiplies the gradient vector to form a reduced 

gradient 𝒉 = 𝒁𝑻𝒈, where 𝒈 =
𝝏𝑳

𝝏𝒙
 , and also pre- and post-multiplies the Hessian matrix of second partial 

derivatives (G) to yield a Newton-like step in the reduced space of superbasic variables, i.e., 

     𝑍𝑇𝐺𝑍𝑝𝑆
 = −𝑍𝑇𝑔,   𝑝 = 𝑍𝑝𝑆

        (20) 

where 𝑝is a feasible descent direction. 

 Let the gradient of the objective function be partitioned as  𝑔𝐵 , 𝑔𝑆,𝑔𝑁 . If π satisfies 

                         𝐵𝑇𝜋 = 𝑔𝐵       (21) 

The reduced gradient can then be expressed as 

      𝑍𝑇𝑔 = 𝑔𝑆 − 𝑆𝑇𝜋      (22) 

for the feasible direction 𝑝, we have 

     𝑝 =  

𝑝𝐵

𝑝𝑆

𝑝𝑁

 = 𝑍𝑝𝑆
=  

−𝐵−1𝑆𝑝𝑆

𝑝𝑆

0

       (23) 

where p has been partitioned into  𝑝𝐵 , 𝑝𝑆 , 𝑝𝑁 . The tird part of this equation, 𝑝𝑁 = 0, indicates that no change 

will be made to the current nonbasic variables. Whenever the reduced gradient 𝑍𝑇𝑔 is nonzero, only the 

variables in  𝐵 𝑆  are optimized. If the bound of a variable is encountered, that variable is made nonbasic and 

removed from the superbasic (or basic) set. 

 Let the pricing of nonbasic columns be expressed as 
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                        σ = 𝑔𝑁 − 𝑁𝑇𝜋      (24) 

we could then write 

       
𝐵𝑇

𝑆𝑇

𝑁𝑇 𝐼

  
𝜋
𝜍
 =  

𝑔𝐵

𝑔𝑆

𝑔𝑁

         (25) 

where π and σ are exact Lagrange multipliers for the current active constraints. If the elements of vector σ are 

nonzero and of appropriate sign, one or more nonbasic variables are made superbasic and optimization 

continues for the new set  𝐵 𝑆 . If not, an optimum has been achieved for the original problem. 

 

III. THE BASIC APPROACH 
Before we proceed to the case of MINLP problems, it is worthwhile to discuss the basic strategy of 

process for linear case, i.e., Mixed Integer Linear Programming (MILP) problems. 

Consider a MILP problem with the following form 

      Minimize  𝑃 = 𝑐𝑇𝑥    (26) 

       Subject to  𝐴𝑥 ≤ 𝑏  (27) 

             𝑥 ≥ 0    (28) 

                 𝑥𝑗  integer for some 𝑗 ∈ 𝐽   (29) 

A component of the optimal basic feasible vector  𝑥𝐵 𝑘 , to MILP solved as continuous can be written as 

 𝑥𝐵 𝑘 = 𝛽𝑘 − 𝛼𝑘1 𝑥𝑁 1 − ⋯ − 𝛼𝑘𝑗 ∗ 𝑥𝑁 𝑗 − ⋯ − 𝛼𝑘,𝑛−𝑚   𝑥𝑁 𝑛−𝑚                     (30) 

Note that, this expression can be found in the final tableau of Simplex procedure. If (𝑥𝐵)𝑘  is an integer variable 

and we assume that 𝛽𝑘  is not an integer, the partitioning of 𝛽𝑘  into the integer and fractional components is that 

given 

𝛽𝑘 =  𝛽𝑘  + 𝑓𝑘 , 0 ≤ 𝑓𝑘 ≤ 1                                                                   (31)                              

suppose we wish to increase (𝑥𝐵)𝑘  to its nearest integer, (  + 1). Based on the idea of suboptimal solutions 

we may elevate a particular nonbasic variable, say  𝑥𝑁 𝑗 ∗ , above its bound of zero, provided 𝑘𝑗 ∗, as one of 

the element of the vector 𝑗 ∗ , is negative. Let 𝑗 ∗  be amount of movement of the non variable  𝑥𝑁 𝑗 ∗ , such 

that the numerical value of scalar (𝑥𝐵)𝑘  is integer. Referring to Eqn. (9), 𝑗 ∗  can then be expressed as  

𝑓∗ =
1 − 𝑓𝑘

−𝛼𝑘𝑗 ∗
                                                                         (32) 

while the remaining nonbasic stay at zero. It can be seen that after substituting (31) into (32) for  𝑥𝑁 𝑗 ∗  and 

taking into account the partitioning of 𝛽𝑘  given in (31), we obtain 

     (𝑥𝐵)𝑘 =   + 1      (33) 

Thus, (𝑥𝐵)𝑘  is now an integer. 

It is now clear that a nonbasic variable plays an important role to integerize the corresponding basic 

variable. Therefore, the following result is necessary in order to confirm that must be a non-integer variable to 

work with in integerizing process. 

 

Theorem 1. Suppose the MILP problem  26 -(29) has an optimal solution, then some of the nonbasic 

variables. (𝑥𝑁)𝑗 , 𝑗 = 1, … , 𝑛, must be non-integer variables. 

Proof: 
Solving problem as a continuous of slack variables (which are non-integer, except in the case of equality 

constraint). If we assume that the vector of basic variables Bx  consists of all the slack variables then all integer 

variables would be in the nonbasic vector 𝑥𝑁  and therefore integer valued. 

 

IV. DERIVATION OF THE METHOD 

It is clear that the other components, (𝑥𝐵)𝑖≠𝑘 , of vector 𝑥𝐵  will also be affected as the numerical 

value of the scalar (𝑥𝑁)𝑗 ∗  increases to ∆𝑗 ∗ . Consequently, if some element of vector 𝑗 ∗ , i.e., 𝑗 ∗  for 𝑖 ≠ 𝑘, 

are positive, then the corresponding element of 𝑥𝐵  will decrease, and eventually may pass through zero. 

However, any component of vector x must not go below zero due to the non-negativity restriction. Therefore, a 
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formula, called the minimum ratio test is needed in order to see what is the maximum movement of the nonbasic 

(𝑥𝑁)𝑗 ∗  such that all components of x remain feasible. This ratio test would include two cases. 

1. A basic variable (𝑥𝐵)𝑗≠𝑘  decreases to zero (lower bound) first. 

2. The basic variable, (𝑥𝐵)𝑘  increases to an integer. 

Specifically, corresponding to each of these two cases above, one would compute 

𝜃1 = min
𝑖≠𝑘|𝑗 ∗>0

 
𝛽𝑖

𝑗 ∗
                                                                        (34) 

                                    𝜃2 = ∆𝑗 ∗                                               (35) 

How far one can release the nonbasic  𝑥𝑁 𝑗 ∗  from its bound of zero, such that vector 𝑥 remains feasible, will 

depend on the ratio test ∗
 given below 

         ∗ = min 𝜃1, 𝜃2                            (36) 

Obviously, if ∗ = 𝜃1 , one of the basic variable (𝑥𝐵)𝑖≠𝑘  will hit the lower bound before (𝑥𝐵)𝑘  becomes 

integer. If ∗ = 𝜃2 , the numerical value of the basic variable (𝑥𝐵)𝑘  will be integer and feasibility is still 

maintained. Analogously, we would be able to reduce the numerical value of the basic variable (𝑥𝐵)𝑘  to its 

closest integer  𝛽𝑘 . In this case the amount of movement of a particular nonbasic variable,  𝑥𝑁 𝑗 ∗ , 

corresponding to any positive element of vector 𝑗 ′ , is given by 

∆𝑗 ′=
𝑓𝑘

𝑘𝑗 ′

                                                                                   (37) 

In order to maintain the feasibility, the ratio test 
*
 is still needed. 

 

V. THE ALGORITHM 

The first four sets of figure 1 partition the full index set , {1, 2, …, n}, i.e. JB  JS  JL  JU  = {1, 2, …, n} 

and J  J,  . The set J1 of indices corresponding to integer variables is assumed to be of small 

cardinality, and m + nS + nL + nU = n. 

The approach assumes that the continuous problem is solved, and seeks an integer-feasible solution in 

the close neighbourhood of the continuous solution. The general philosophy is to leave non-basic integer 

variables at their respective bounds (and therefore integer valued) and conduct a search in the restricted space of 

basics, superbasics, and nonbasic continuous variables, j  JI. 

The algorithm may be broadly summarized as follows: 

1.  Obtain solution of the continuous relaxation as a nonlinear programming problem. 

2.  CYCLE1: remove integer variables from the basis by moving a suitable nonbasic away from its bound. The 

hope is to drive an infeasible integer basic variable to an integer value, and then to pivot it into the 

superbasic set; the previous nonbasic replacing it in the basis. 

 

Table 1. Some notation is first needed. We define the required index sets. 

Name Meaning Cardinality 

JB set of indices for basic variables  JB  = m  

JS set of indices for superbasic variables  JS  = nS 

JL set of indices for nonbasic variables at their lower 

bounds 
 JL  = nL 

JU set of indices for nonbasic variables at their upper 

bounds 
 JU  = nU 

JI set of indices for integer variables  JI  = nI 

 

Tabel 1.   Index sets for extended simplex partition 

3.  CYCLE2, pass1: adjust integer-infeasible superbasics by fractional steps to reach complete integer-

feasibility. 

4.  CYCLE2, pass2: adjust integer feasible superbasics. This phase aims to conduct a highly-localized 

neighbourhood search see Scarf [83] to verify local optimality. 

In Cycle1, there are several steps. 

Step 1. Get row 𝑖∗ the smallest integer infeasibility, such that  𝛿𝑖∗ = min 𝑓𝑖 , 1 − 𝑓𝑖   

Step 2. Do a pricing operation  

 𝑣𝑖∗
𝑇 = 𝑒𝑖∗

𝑇𝐵−1 
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Step 3. Calculate 𝜍𝑖𝑗 = 𝑣𝑖∗
𝑇 𝑎𝑗  

 With 𝑗 corresponds to 

min
𝑗

  
𝑑𝑗

𝜍𝑖𝑗
   

             Calculate the maximum movement of nonbasic j at lower bound and upper bound 

 Otherwise go to next non-integer nonbasic or superbasic 𝑗 (if available). Eventually the column 𝑗∗ is to 

be increased form LB or decreased from UB. If none go to next 𝑖∗. 

Step 4. 

  Solve 𝐵𝛼𝑗 ∗ = 𝛼𝑗 ∗  for 𝛼𝑗 ∗  

Step 5. Do ratio test for the basic variables in order to stay feasible due to the releasing of nonbasic 𝑗∗ from its 

bounds. 

  

Step 6. Exchange basis  

  

Step 7.   If row 𝑖∗ =  ∅  go to Stage 2, otherwise 

 Repeat from step 1.  

 

VI. Computational Experience : A Planning Problem For Positioning A New Product A 

Multiattribute Space 
This is a marketing problem faced by a firm which wishes to position a new brand product in an 

existing product class. It is natural that an individual choice for his/her most preferred products are influenced 

essentially by the perceptions and values of the products (e. g. the design of the product). Individuals usually 

differ in their choice of an object out of an existing set, and they would also differ if asked to specify an ideal 

object. Due to these differences, the aim of the problem considered here is to optimally design a new product in 

order to attract the largest number of consumers 

 

a. Mathematical Statement of the Problem 

The mathematical programming formulation of the problem is due to Duran and Grossmann [5]. Let 

𝑁 be the number of consumers who are a representative sample of the common population for a certain price 

range of a product class. Alse, let 𝑀 be the number of an existing product (e. g. different brands of cars) in a 

market which are evaluated by consumers and are located in a multiattribute space of dimension 𝐾. We then 

define 

𝑧𝑖𝑘   - ideal point on attribute 𝑘 for the ith consumer, 𝑖 = 1, … , 𝑁; 𝑘 = 1, … , 𝐾 

𝑤𝑖𝑘  - weight given to attribute 𝑘 by the ith consumer, 𝑖 = 1, … , 𝑁; 𝑘 = 1, … , 𝐾 

𝛿𝑗𝑘   - ideal point on attribute 𝑘 for the ith consumer, 𝑖 = 1, … , 𝑁; 𝑘 = 1, … , 𝐾 

Furthermore, a region (hyper ellipsoid) defining the distance of each consumers to the ideal point can 

be determined in terms of the existing product,  in a way to produce a formulation such that each consumer will 

select a product which is closest to his/her ideal point. It was mentioned above that the objective of the problem 

is to optimally design a new product (𝑥𝑘 , 𝑘 = 1, … , 𝐾) so as to attract the largest number of consumers. 

Duran and Grossmann [13] have extended the scope of the positioning problem by introducing the 

revenue of the firm from the new product sales to consumer 𝑖 (𝑐𝑖) as well as a function 𝑓 for representing the 

cost of reaching locations of the new product within an attribute space. Now, the objective of the problem would 

be to maximize the profits the firm. The binary variable (𝑦𝑖) is introduced for ecah consumer to denote whether 

he/she is attracted by the new product or not. 

Consider a positioning problem in which there are 10 existing products (𝑀), 25 consumers (𝑁) and 

attributes (𝐾). The algebraic representation of such a problem can be written as follows. 

Maximize 𝐹 =  𝑐𝑖𝑦𝑖 − 0.6𝑥1
2

25

𝑖=1

+ 0.9𝑥2 + 0.5𝑥3 − 0.1𝑥4
2 − 𝑥5 

Subject to  

 𝑤𝑖𝑘 𝑥𝑘 − 𝑧𝑖𝑘 2 −

5

𝑘=1

(1 − 𝑦𝑖)𝐻 ≤ 𝑅𝑖
2, 𝑖 = 1, … , 25 
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𝑥1 − 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≤ 10 

0.6𝑥1 − 0.9𝑥2 − 0.5𝑥3 + 0.1𝑥4 + 𝑥5 ≤ 0.64 

𝑥1 − 𝑥2 + 𝑥3 − 𝑥4 + 𝑥5 ≥ 0.69 

0.157𝑥1 + 0.05𝑥2 ≤ 1.5 

0.25𝑥2 + 1.05𝑥4 − 0.3𝑥5 ≥ 4.5 

2.0 ≤ 𝑥1 ≤ 4.5 

0.0 ≤ 𝑥2 ≤ 8.0 

3.0 ≤ 𝑥3 ≤ 9.0 

0.0 ≤ 𝑥4 ≤ 5.0 

4.0 ≤ 𝑥5 ≤ 10.0 

0 ≤ 𝑦𝑖 ≤ 1 and integer  ∀𝑖  

Where 

𝑅𝑖
2 = min

𝑗 =1,…,10
{ 𝑤𝑖𝑘 (𝛿𝑗𝑘 − 𝑧𝑖𝑘 )2}, 𝑖 = 1, … , 25

5

𝑘=1

 

𝐶𝑇 = [1, 0.2, 1, 0.2, 0.9, 0.9, 0.1, 0.8, 1.0, 0.4, 1, 0.3, 0.1,0.3, 0.5, 0.9, 0.8, 0.1, 0.9, 1, 1, 1,  
  0.2, 0.7, 0.7] 

and 𝐻 = 1000 

The data for the coordinates of existing product (𝛿𝑗𝑘 ), ideal points (𝑧𝑖𝑘 ) and attribute weights (𝑤𝑖𝑘 ) 

can be obtained in Duran and Grossmann (1986b). 

It can be seen that the above formulation is a MINLP model and it contains 25 binary variables, 5 

continuous bounded variables, 30 inequality constraints (25 of them acting nonlinearly) and a nonlinear 

objective function. 

b. Discussion of the Result 

We solved the problem on PC with processor Intel(R) Core (TM) i5-2300 CPU @ 280 GHZ and RAM 

4.00GB. We used our Nonlinear Programming software in order to get the optimal continuous solution. The 

results are presented in Table 1.  It can be observed that five binary variables have had integer value (all of them 

are in upper bound). The binary variable 𝑦𝑖  happens to be a superbasic in the continuous result with non-integer 

value. We moved this variable to its closest integer by using a truncation strategy and kept the integer result as 

superbasic. The corresponding basic variables would be affected due to this movement. Therefore it is necessary 

to check the feasibility of the results. The proposed integerizing algorithm was then implemented on the 

remaining non-integer binary variables. The integer results can also be found in Table 1. 

It is interesting to note that our result (𝐹 = 8.14313) is slightly better that Duran and Grossmann’s 

[5] result (𝐹 = 7.78913). The binary variable 𝑦𝑖  has a value of 1.0 in our result instead of 0.0 as in Duran 

and Grossmann’s result. The total computational time to get the integer result by using our proposed algorithm 

is 10.98 seconds. 
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Table 1.  The Results of the Positioning Problem. 

Variable Activity in Activity after 

  Cont.Soln. integ. Process 

𝒙𝟏  2.0   2.0 

𝒙𝟐  8.0   7.81528 

𝒙𝟑  7.32849  6.29911  

𝒙𝟒  3.52381  3.56779  

𝒙𝟓  4.0  4.0  

𝒚𝟏  0.93153  1.0  

𝒚𝟐  0.70970 0.0  

𝒚𝟑  0.67548  0.0  

𝒚𝟒  0.50181  0.0  

𝒚𝟓  0.77537  0.0  

 𝒚𝟔  1.0  1.0  

𝒚𝟕  0.78191        0.0  

𝒚𝟖  1.0        1.0  

𝒚𝟗  0.82922        0.0  

𝒚𝟏𝟎  0.11168        0.0  

𝒚𝟏𝟏  0.81785        0.0  

𝒚𝟏𝟐 

𝒚𝟏𝟑 

𝒚𝟏𝟒 

𝒚𝟏𝟓 

𝒚𝟏𝟔 

𝒚𝟏𝟕 

𝒚𝟏𝟖 

𝒚𝟏𝟗 

𝒚𝟐𝟎 

𝒚𝟐𝟏 

𝒚𝟐𝟐 

𝒚𝟐𝟑 

𝒚𝟐𝟒 

𝒚𝟐𝟓 

 0.74375  

0.93852 

0.61360 

1.0 

0.69117 

1.0 

0.91958 

0.83079 

0.97451 

0.93383 

0.57154 

0.49858 

0.91093 

1.0 

      0.0 

      0.0 

      0.0 

1.0 

0.0 

1.0 

0.0 

0.0 

1.0 

0.0 

0.0 

0.0 

0.0 

1.0 

Obj.value(F)   16.41964  8.14313  

 

VII. CONCLUSIONS 
This paper has presented a direct search method for achieving integer-feasibility for a class of mixed-

integer nonlinear programming problems in a relatively short time. The direct search approach used the strategy 

of releasing nonbasic variable from their bounds, combined with the “active constraint” method and the notion 

of superbasic. After solving a problem by ignoring the integrality requirements, this strategy is used to force the 

appropriate non-integer basic variables to move to their neighborhoods integer points. 

A study of the criteria for choosing a nonbasic variable to work with in the integerizing strategy has 

also been made. The number of integerizing steps would be finite if the number of integer variables contained in 

the problem is finite. However, it should be noted that the computational time for the integerizing process does 

not necessarily depend on the number of integer variables, since many of the integer variables may have an 

integer value at the continuous optimal solution. 

The new direct search method has been shown to be successful on a range of problems, while not 

always able to achieve global optimality. In a number of cases to obtain the suboptimal point is acceptable, since 
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the exponential complexity of the combinatorial problems in general precludes branch-and-bound, except on 

small to medium problems. 

Computational testing of the procedure presented this paper has demonstrated that it is a viable 

approach for large problems.  
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