Some Properties of Anti-inverse semi group in LA-semiring

P. Sreenivasulu Reddy^a & Gosa Gadisa^a

Department of Mathematics, Samara University Samara, Afar Region, Ethiopia. Post Box No.132

Abstract:- Authors determine some different additive and multiplicative structures and congruence of antiinverse semigroup of LA-semiring which satisfies the identity a + 1 = 1.

Keywords:- Anti-inverse semigroup, Seperative semigroup and congruence

I. DEFINITIONS

Definition1.1. For the elements x and y of a semigroup S, we say that they are mutually anti-inverse if the following conditions hold

xyx = y and yxy = x

Definition 1.2. A semigroup S is called quasi- seperative if for any $x,y \in S$, $x^2 = xy = y^2 \Rightarrow x = y$. **Definition 1.3.** A semigroup S is called weakly seperative if $x^2 = xy = yx = y^2$ $\Rightarrow x = y$ for all x,y in S. **Definition 1.4.** A semigroup S is called seperative if i) $x^2 = xy$ and $y^2 = yx \Rightarrow x = y$

ii)
$$x^2 = yx$$
 and $y^2 = xy \Rightarrow x = y$

II. PRELIMANARIES

Theorem2.1. Let $(S, +, \cdot)$ be a semi ring and (S, \cdot) is a anti –inverse semigroup satisfying the identity a + 1 = 1 for all as then (S, +) is an anti –inverse semigroup.

Poof: let $(S, +, \cdot)$ be asemi ring and (S, \cdot) is a anti-inverse semigroup satisfying the identity a + 1 = 1 for all $a \in S$. Let for any $a \in s$ there exist an element $x \in s$ such that xax = a

Consider, x + a + x = x + a.1 + x = x + a(1 + xa) + x = x + a + axa + a = x + x + axa + a = x(1 + 1) + axa + a = x.1 + (ax + 1)a = x + 1.a = x + a = axa + a = (ax + 1)a = 1.a

= a. Hence, x + a + x = a

Similarly, a + x + a = x. Therefore, (S, +) is anti-inverse semigroup.

Theorem2.2. Let $(S, +, \cdot)$ be LA-semi ring and (S, \cdot) is a anti-inverse semigroup then the product of two anti-inverse element is also anti-inverse element in (S, \cdot) .

Proof : Let $(S, +, \cdot)$ be LA-semi ring and (S, \cdot) is an anti –inverse semigroup Let a,b are two elements in (S, \cdot) then their exist x, y elements in (S, \cdot) such that xax = a and yby = b Consider, yxabyx = bybxabyaxa = byaxbbyaxa = byaxabyba = byxyxa = byxaxy = byay = ayby = ab. Hence, yxabyx = ab Similarly, we can prove that baxyba = xy

Theorem2.3. Let $(S, +, \cdot)$ be a LA-semi ring and (S, \cdot) is an anti –inverse semigroup then (S, .) is an abeliah semigroup.

Proof : Let $(S, +, \cdot)$ be a LA-semi ring and (S, \cdot) is a anti –inverse semigroup From the above theorem 2, for any a, $b\epsilon(S, \cdot)$ their exist x, y, $b\epsilon(S, \cdot)$ Such that yxabyx = ab \Rightarrow yxaxyb = ab \Rightarrow yayb = ab \Rightarrow ybya = ab \Rightarrow ba = ab Hence (S, \cdot) is an abelian semigroup

Theorem2.4. Let $(S, +, \cdot)$ be a semi ring and (S, \cdot) is a anti –inverse semigroup satisfying the identity a + 1 = 1 for all acs then i) (S, +) is an abelian semigroup ii) The sum of two anti-inverse elements is again anti inverse element (S, +)

Therefore, $y + x + a + b + y + x = a + b \rightarrow (i)$

Similarly, we can prove that b + a + x + y + b + a = x + y. Therefore, a + b is an anti-inverse element in (S, +). Therefore the sum of two anti-inverse elements is again anti-inverse elements in (S, +).

To show that (S, +) is an abelian semigroup: From (i), a + b = y + x + a + b + y + x = y + x + a + x + y + b = y + a + y + b = y + b + y + a = b + a. Hence, a + b = b + a. Therefore, (S, +) is an abelian semigroup.

Theorem2.5. Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti inverse semigroup satisfying the identity a + 1 = 1, for all a in S then (S, +) is i) quasi-separative ii) weakly separative iii) separative

Proof: Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S then from theorem 2.2, (S, +) is an anti-inverse semigroup

Let a, b ϵ (S, +) then consider a + a = a + b \Rightarrow a(1+1) = a + b \Rightarrow a.1 = a + yby = ab + b + yby = yxabyx + b + yby = yxabyb + b + yby = (yxaxy + 1)b + yby = 1.b + yby = b + b

= b(1+1) = b.1. Hence, a = bTherefore, $a + a = a + b \Rightarrow a = b$

Similarly, we can prove that $a + b = b + b \Rightarrow a = b$ Hence (S, +) is quasi- seperarive \rightarrow (i) From the theorem2.4, (S, +) is commutative, that is, a + b = b + aSo $a + a = a + b = b + a = b + b \Rightarrow a = b$ Hence (S, +) is weakly seperative \rightarrow (ii) From the (i) and (ii) clearly, (S, +) is seperative.

Theorem2.6. Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S then $(S, +, \cdot)$ be a medial semiring.

Proof: Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S

From the theorem 2.3, (S, $\cdot)$ is an abelian semigroup.

From the theorem 2.4, (S, +) is an abelian semigroup.

Let a,b,c,d ϵ (S, \cdot) then abcd = a(bc)d = a(cb)d = acbd

Hence, abcd = acbd. Therefore, (S, \cdot) is a medial semigroup.

Similarly, (S, +) is also a medial semigroup. Hence, $(S, +, \cdot)$ is a medial semiring.

Theorem2.7. Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S then (S, +) ia an anti-inverse semigroup.

Proof: Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S. Since, (S, \cdot) is an anti-inverse semigroup, for every $a \in (S, \cdot)$ there exist $x \in (S, \cdot)$ such that xax = a and axa = x.

Consider, $x + a + x = x + xax + x = x(1 + ax) + x = xax + x = (xa + 1)x = xa.x \Rightarrow x + a + x = a.$

Similarly, we can prove that a + x + a = x. Hence, a is an anti-inverse element of (S, +)Therefore, (S, +) is an anti-inverse semigroup.

Theorem2.8. Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) is an anti-inverse semigroup satisfying the identity a + 1 = 1 for all a in S then the sum of two anti-inverse elements is also an anti-inverse element in (S, +).

Proof: Proof is similar to theorem4.

Theorem2.9. Let (S, \cdot) be an anti-inverse semigroup. If η is a relation defined on S by $\eta = \{(a, b) | \eta \in S, e_a a = e_b b \text{ where } e_a, e_b \text{ unit elements of } a, b \text{ respectively in } S\}$ then η is maximum 5-potent congruence on S.

Proof: Let (S, \cdot) be an anti-inverse semigroup. If η is a relation defined on S by $\eta = \{(a, b) | \eta \in S, e_a a = e_b b where <math>e_a, e_b$ unit elements of a, b respectively in S}

First we show that η is an equalence relation on S. For any a in S, $a = a \Rightarrow a^5 = a^5 \Rightarrow e_a a = e_a a \Rightarrow a \eta a$. Hence η is reflexive.

Let $a \eta b$ and $b \eta c \Leftrightarrow e_a a = e_b b$ and $e_b b = e_c c$ so $e_a a = e_b b = e_c c \Rightarrow e_a a = e_c c \Leftrightarrow a \eta c$. $a \eta b$ and $b \eta c \Rightarrow a \eta c$. Hence η is transitive $a \eta b \Leftrightarrow e_a a = e_b b \Leftrightarrow a^5 = b^5 \Leftrightarrow a = b \leftrightarrow b = a \Leftrightarrow b^5 = a^5 \Leftrightarrow e_b b = e_a a \Leftrightarrow b \eta a$. Hence η is symmetric. Therefore, η is an equalence relation.

Let a η b $e_a a = e_b b \Leftrightarrow a^5 = b^5 \Leftrightarrow a^5 z^5 = b^5 z^5 \Leftrightarrow (az)^5 = (bz)^5 \Leftrightarrow (az)^4 (az) = (bz)^5 (bz) \Leftrightarrow e_{az} az = e_{bz} bz \Leftrightarrow az$ ηbz . Hence η is right compatibility.

Let a η b \Leftrightarrow $e_a a = e_b b \Leftrightarrow a^5 = b^5 \Leftrightarrow z^5 a^5 = z^5 b^5 \Leftrightarrow (za)^5 = (zb)^5 \Leftrightarrow (za)^4 (za) = (zb)^4 (zb) \Leftrightarrow e_{za} za = e_{zb} zb \Leftrightarrow za$ η zb. Hence η is left compatibility.

Therefore, η is compatability on S.

Let $a^5 \eta b^5 \Leftrightarrow e_a a^5 = e_b b^5 \Leftrightarrow e_a a = e_b b \Leftrightarrow a \eta b$. Therefore, η is 5-potent congruence relation on S.

To prove η is maximum, let μ be any 5-potent congruence relation on S. Let $(a, b) \in \mu \Leftrightarrow (a^5, b^5) \in \mu \Leftrightarrow (ea, eb) \in \mu$. We know that for all $(e_a, e_b) \in \mu$ and $(a, b) \in \mu \Rightarrow (e_a.a, e_b.b) \in \mu$. Since $e_a.a = e_b.b \Leftrightarrow a\eta b \Leftrightarrow (a, b) \in \eta$ and $(a, b) \in \mu \Rightarrow \mu \Rightarrow \mu \Rightarrow \mu \Rightarrow \mu \Rightarrow \mu \le \eta$. Hence η is maximum 5-potent congruence relation S.

Theorem2.10. Let (S, + .) be a LA-semiring and (S, .) be an anti-inverse semi group and let η be a congruence relation on S. Then S/ η is an anti-inverse sub semigroup.

Proof: Let (S,+ .) be a LA-semiring and (S, .) be an anti-inverse semi group and let η be a congruence relation on S.

Therefore we can construct the congruence class S/ η such that S/ $\eta = \{a \ \eta : a \in (S, .)\}$ where a η is a congruence class of a.

Define o on S/ η in the following way. For any $a\eta$, $b\eta \in S/\eta$ Such that $(a \eta) \circ (a \eta) = (ab) \eta$. Let $a \eta = a^1 \eta$ and $b \eta = b^1 \eta$ then $(a \eta)o(b \eta) = (ab) \eta \Rightarrow (a^1 \eta)o(b^1 \eta) = (ab) \eta \Rightarrow (a^1 b^1) \eta = (ab) \eta$. Hence o is well defined and it is associative. Hence $(S/\eta, .)$ is an anti-inverse sub semigroup.

Theorem2.11. Let η be a congruence relation on an anti-inverse semigroup S then η^n is also a congruence relation on S.

Proof: Let η be a congruence relation on an anti-inverse semigroup S

Let a ηb then there exist $t_1,\,t_2,\,t_3,\!tn_{\text{-}1}\,\varepsilon S$ and by transitivity

We have $a\eta t_1, t_1\eta t_2, t_2\eta t_3, \dots, t_{n-1}\eta b \Rightarrow a \eta^n b$. it is easy to see that η^n is an equivalence

relation. Let $c \in S$ then c ancb (Since η is compatible)

ca ηct_1 , $ct_1 \eta ct_2$, $ct_2 \eta ct_3$,.... $ct_{n-1}\eta cb$. Hence a $\eta^n b \Rightarrow ca$

 η^n cb similarly, we can prove that a $\eta^n b \Rightarrow ac \eta^n bc$.

Hence η^n is compatible. Therefore η^n is a congruence relation on S.

REFERENCES

- [1] A.H.Clifford and G.B.Preston:"The algebraic theory of semigroups" Math.surveys7; vol. I Amer. Math. Soc 1961.
- [4] J.M.Howie "An introduction to semigroup theory" Academic Press (1976).
- [5] P. Sreenivasulu Reddy and Guesh Yfter "Simple semirings" International Journal of Engineering Inventions. Volume 2, Issue7, (2013), PP. 16-19.
- [6] P. Sreenivasulu Reddy and G. Shobhalatha "Congruence on regular Semigroups" International journal of Algebra and statistics vol.1(2012), pp.75-79.
- [2] S. Bogdanovic, S. Milic, V. Pavlovic "Anti-inverse semigroup" publ.inst.mah., Belgrade, 24 (38), 1978, pp. 19-28.
- [3] S. Bogdanovic "On Anti-inverse semigroups" publ.inst.mah., Belgrade, 25 (39), 1979.