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Abstract:- It’s known that all topographic reduction techniques give the same gravimetric geoid if 

the indirect effect has been taken into account. However, there are some requirements which should 

be taken into consideration when deciding to use certain gravity reduction technique to determine the 

gravimetric geoid. Mainly, the reduction must yield the gravity anomalies that are smooth and small, 

the reduction technique must correspond to a geophysical meaning and the indirect effect must be as 

small as possible. To achieve these requirements, the effect of topography must be taken for the 

whole earth. The aim of this research is to determine the gravimetric geoid for Egypt by taking the 

effect of topography for the whole earth. To determine the effect of topography, the area around the 

computation point is divided into two parts: these are near and far-zone. The near zone is calculated 

numerically and far-zone is calculated form spherical harmonic of topography. In this paper, three 

methods of gravity reduction techniques are applied. These are the Airy-Heiskanen method and the 

Helmert’s second method of condensation as well as the generalized Helmert of condensation. The 

direct, primary and secondary effect of topography is taken into account in this research. The 

gravimetric geoids for Egypt from the three techniques are computed and compared.  

 

Keywords:- Gravimetric Geoid for Egypt -  topographic effect - Airy-Heiskanen model - Digital 

terrain model - Helmert´s methods of condensation. 

 

I. INTRODUCTION 
The determination of the geoid requires the movement of the topographical as well as the 

atmospheric masses inside the geoid to achieve harmonicity in the space outside the boundary 

surface. In a subsequent computation step the change of the gravitational potential by this 

manipulation must be considered properly. In this investigation the gravitational effects of the 

topographical masses are computed for determining the gravimetric geoid for Egypt.  The effects of 

the topographic, isostatic  and compensation masses on the geoid heights are evaluated as three 

separate contributions: the direct topographic effect on the gravity, the primary indirect topographic 

effect on the geoid and the secondary indirect topographic effect on the gravity in case of the gravity 

at the surface of the Earth. (e.g. Novàk et al. 2001; Martinec et al. 1993; Vaníček and Martinec 

1994a,b). The harmonized (unknown) disturbing potential 
hT  can be determined for any point above 

the geoid by (e.g. Martinec et al. 1993), 

 ( , , ) ( , , ) ( , , )hT r T r V r        ,                                                                                    (1) 

with the disturbing gravity potential of the Earth’s gravitational field T. ( , , )V r    is the difference between 

the gravitational potential of the topography 
tV  and the gravitational potential of the compensating masses 

cV  

(Martinec 1998), 

 ( , , ) ( , , ) ( , , )t cV r V r V r        .                                                                                            (2) 

The spherical coordinates r , ,  of the computation point at the surface of the Earth refer to a 

geocentric coordinate system. The geoid height can be derived by Bruns’s formula (Bruns 1878) from the 

harmonized disturbing potential as solution of the geodetic boundary value problem and a correction term on the 

co-geoid height, ( , , )PITE R   , the primary indirect topographical effect (Martinec 1998), 

 
0 0 0 0

( , , ) ( , , ) ( , , ) ( , , )
( , ) ( , , )

( ) ( ) ( ) ( )

h hT R T R V R T R
N PITE R

        
   

       
     ,                     (3) 

where 0 ( )   is the normal gravity at the reference ellipsoid and R the mean radius of the Earth. 



The gravimetric geoid for Egypt using the far-zone topographic effects for different… 

www.irjes.com                                                                    67 | Page 

 

The harmonized gravity disturbances 
hg  can be obtained from Eq. (1) based on the gravity disturbances in the 

real gravity field g  by performing the first radial derivatives (after linearization and approximation) as 

follows (Vaníček et al. 1999; Martinec 1998): 

 
( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )
h

h T r T r V r
g r g r DTE r

r r r

      
       

  
      

  
.       (4) 

The difference between the two gravity disturbances in the real and harmonized gravity field is known 

as the direct topographical effect on gravity, ( , , )DTE r   . Direct and primary indirect topographic-

compensation effect given in Eq. Error! Reference source not found. and Eq. 

Error! Reference source not found., respectively, represent the effect of the topographic and compensation 

masses for geoid determinations. 

The expression for the direct and the secondary indirect topographical effect on gravity at the surface of the 

Earth can be derived by applying the Stokes boundary operator to Eq. (1), which reads in spherical 

approximation,  

 
( , , ) 2

( , , ) ( , , )
h

h hT r
g r T r

r r

 
   


   


.                                                                              (5) 

Inserting the definition of 
hT  from Eq. (1) into Eq. Error! Reference source not found., results in (Vaníček et 

al. 1999): 

 

( , , ) 2
( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ).

h V r
g r g r V r

r r

g r DTE r SITE r

  
      

     


    



   

                                                      (6) 

 

II. THE POTENTIAL OF TOPOGRAPHICAL MASSES AND ITS RADIAL 

DERIVATIVE 
In the following, the geoid is approximated by a geocentric reference sphere of radius R (6371 km). 

The geocentric radii of the computation and the integration points are given by adding the orthometric heights of 

these points to the radius of the geocentric sphere, so that the ellipsoidal figure of the Earth is neglected (see 

Fig.1). The density of the topographic masses is considered to be constant throughout the paper. 

The potential of the topographic masses between the topographic surface S and the sphere of radius R at the 

computation point P is given by Newton’s integral in spherical coordinates as follows (Fig. 1): 

 

2

,




  r r

r r

Q

P

P

r

t

R

V G d d
l




                                                                                               (7) 

with 

 
2 2: 2 cosl r r     ,                                                                                                          (8) 

the universal gravitational constant G, the density of the topography  , Q Qr R H  , and the surface element 

in spherical coordinates, d = cos Q Q Qd d   . The geocentric angle ψ is the spherical distance between the 

radius vectors of the computation point ( , , )P r  r  and the integration point ( , , )Q Q Q Qr  r , given by: 

 cos sin sin cos cos cos( )Q Q Q         ,                                                               (9) 

where   and   are the geodetic latitude and longitude of the computation point. Further quantities are shown 

in Fig. 1. 

 

The inner integral of Eq. (7) can be given by Gradshteyn and Ryzhik (1980): 

 0

1
( , , )

2

Q

P P

r

t
R

V G F r d




   




 
 r r r=r

,                                                                            (10) 

with 

 
2 2

0( , , ) ( 3 cos ) (3 1)ln( ( , , ) cos )F r r l r cos l r r                                 (11) 

and ( , , )P PR H   r . 
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The integration interval in Eq. (10) can be separated into two parts,  , PR r   and ,p Qr r
   . The quantity 

Pr  =R+Hp´ denotes the geocentric radius of the surface point P S , which is located under the computation 

point P  (Fig. 1). Then the integral of Eq. (10) can be given by (Makhloof and Ilk 2008): 
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                     (12) 

with the Euclidean distances as shown in Fig. 1 and defined by: 

 
2 2: 2 cosP P P Pl r r r r     ,                                                                                                        (13) 

 
2 2: 2 cosP Q P Ql r r r r     .                                                                                                        (14) 

The first term in Eq. (12) is due to the mass of a homogenous spherical shell of thickness 

P PH r R    acting on the gravitational potential at the computation point P. Two cases have to be 

distinguished: the point is located either on or outside the topography of the Earth ( P Pr r  ) or the point is 

located below or on the geoid ( P Pr r  ). The integral term in Eq. (12) denotes the influence of the varying 

terrain due to Q Pr r  (terrain correction). In this investigation we will consider the first case ( P Pr r  ) as we 

will determine the effect of the topographic-isostatic masses at the surface of the Earth. The second case of Eq. 

(12) is necessary for the calculation of the primary indirect topographical effect.  

 
Fig. 1 Geometry of the topography in spherical approximation 

 

 The first derivatives of the potential of the topographic masses with respect to z can be calculated using 

the following formula: 
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                                                                                                                                    (15) 
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with the function, 
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The integration domain is divided into two integration sub-domains 0 Fz     where 0 the near-zone is 

and Fz  is the far-zone. Then second term in Eq. (16) can be written as the sum of the two parts as follow 

    
0

1 1 0 1( , , ) ( , , ( , ,
Q

P
P

Fz

r

Fz
r

G F r d G F r d G F r d


  

           


   
   r=r

     (18) 

The first term can be calculated till to small geocentric angle ψ by numerical integration. 

The second term can be calculated using spherical harmonic expansion (Makhloof and Ilk  2008):  

 

2.1 Direct topographic effect (DTE) 

The direct topographical effect DTE  on gravity was given by Martinec and Vaníček 

(1994a) in spherical approximation. DTE can be obtained from the difference between the first 

derivatives of the potential of the topographic and isostatic masses as follows (see Fig. 2). Then, the 

DTE for the Airy-Heiskanen model can be given by: 
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(19)   

where Pt  is the root under the computation point and Qt is the thickness of the 

variable root (see Fig. 2). bA  and biA are the effects of the topographic and the 

isostatic Bouguer shells. Therefore, these terms are identical if the mass 

conservation principle is applied. In this case both terms can be skipped and the 

difference between remaining two terms is called the direct terrain effect terDTE  on 

gravity. The first term on the right-hand side of Eq. (19) has been discussed already 

(Eq. (18)). The second term is determined following the same procedures as used in 

the first term of Eq. (18).   
 

 
Fig. 2: Geometry of the isostatic masses in case of Airy-Heiskanen model 
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In Helmert’s second method of condensation, the topographical masses are condensed on 

the geoid as a single layer (Heiskanen and Moritz 1967). In this model, the single-layer density Qk  

is a function of the density and height of the topographic masses. Using the mass conservation 

principle, the local single-layer density can be given in spherical approximation as follows 

(Wichiencharoen 1982; Martinec 1998): 

 
2 2

QR H

Q

R

k R d d d


    



   .                                                                                                       (20) 

The potential of the condensed masses at the computation point Q can be given by (Heiskanen and 

Mortiz, 1967): 

2( ) . ,c c

c

k
V P G R d

l



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                                                                                               (21) 

where 
2 2 2 cosc Q c Q cl r R r R     

with the density of the surface layer k  and the radius of the (approximate) condensation sphere cR . In 

case of generalized Helmert’s condensation method it holds cR R D  , and in case of Helmert’s second 

condensation method cR R  (see Fig. 3). Then, the DTE  of this technique is given by: 
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             (22)                                                                                  

The contribution of the integral of Eq. (22) can be developed in the following form (Novàk et al. 

2001): 
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where 
bA  and 

cbA are the effects of the topographic Bouguer shell and the corresponding 

condensed Bouguer layer. The terms 
bA  and 

cbA  are equal if the mass conservation principle is 

applied (Wichiencharoen 1982). In this case, both terms can be skipped. The difference between the 

other two terms is called the direct terrain effect 
terDTE  in the following, which accounts for the 

entire DTE on gravity.   

 In the case of generalized Helmert of condensation, the topographic masses are condensed 

on an internal surface parallel to the geoid, at a depth D below the geoid. If D is not equal to 21 km, 

this method is called generalized Helmert’s method of condensation (Heck. 2003). The direct terrain 

effect after removing the effects of the topographical Bouguer shell and the condensed Bouguer layer 

can be given as follows (see Fig.3Error! Reference source not found.): 
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where again both of the two integrals are computed as shown in Eq. (19) 
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Fig. 3: Geometry of Helmert’s condensation methods 

 

2.2 The primary indirect topographical effect on geoid heights 

 The primary indirect topographical effect PITE on the geoid is given by Bruns’s formula 

(Bruns 1878; Eq. Error! Reference source not found.) as follows: 
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                                                                  (25) 

The potential of the Bouguer shell of the topographical masses and the potential of the Bouguer layer 

of the condensed masses is given by: 
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Then, the primary indirect terrain effect 
terPITE  on the geoid in case of Helmert’s second method 

of condensation and generalized Helmert method of condensation is given by (Martinec and Vaniček 

1994b), 
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The first integral is calculated according to Eq. (12) and the second term is numerically integrated. 

 

In the case of the Airy-Heiskanen model, the primary indirect terrain effect for topographic-compensation 

masses is given by the formula: 
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Also, Eq.(28) ca be  manipulated in the same way as Eq, (27). 
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2.3 The secondary indirect topographical effect on gravity  

For the Stokes-Helmert problem, the spherical form of the secondary indirect topographical 

effect SITE on gravity was formulated by Vaníček et al. (1999) as a re-scaled value (the scale is 

equal to 2/r) of the residual topographical potential evaluated at a radius equal to the radius of the 

Earth’s surface. The different topographic-compensation models will be discussed in the following 

paragraphs. 

In Helmert’s second method of condensation and generalized Helmert method of 

condensation, the difference between the gravitational potential of the topographical shell and its 

condensed counterpart is zero in case of mass conservation. The SITE can be computed using the 

following expression (Vaníček et al. 1999): 
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 Again, Eq.(29) ca be  manipulated in the same way as Eq, (27). 
 

In case of the Airy-Heiskanen model, the SITE is calculated according to (Makhloof and Ilk 2008): 
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Finally, Eq.(30) ca be  manipulated in the same way as Eq, (27). 

 

III. NUMERICAL ANALYSIS 
3.1 Gravity data 

The gravity data available for this investigation consists of 935 gravity station irregularly 

distributed on the Egyptian territory. All coordinates are referred to GRS80. These data can be 

classified into three groups: about 180 gravity stations observed by Egyptian Survey Authority 

(ESA) and these data are observed along the first order levelling lines, a bout 77 first order gravity 

stations forming the National Gravity Standardization Base Net (NGSBN77) and the rest of the 

stations are observed by General Petroleum Company (GPC).   

 

3.2 Height data 

The available height model for Egypt, used in this study has been produced by Abd-

Elmotaal (2010). The grid spacing in latitude and longitude directions for this DTM are (12"*12"). 

This DHM extended from 22-40 in latitude and from 19-35 in longitude. For calculating the 

spherical harmonic expansion of topography a global DTM such as GEBCO (General Bathymetric 

Chart of the Oceans) with one arc-minute resolution (http://www.ngdc.noaa.gov/mgg/gebco)  is used.  

 

3.3 Geoid computations 

In this section, the direct terrain effects are computed for the three method of gravity 

reductions. The near- zone effect is computed using numerical integration for a cap size  of 
03 . 

The rest of topography is computed using spherical harmonic expansion. The summation of the two 

parts gives the total direct terrain effect which is shown in Fig. 4. The secondary indirect terrain 

effect has been manipulated in the same way as DTE and shown in Fig. 5. Then, the reduced gravity 

anomalies in the framework of the remove-restore technique is computed by 

                          Re .     F fg g DTE SITE g                       (31) 

where Re fg  is the effect of the reference ellipsoid on gravity anomalies. Thus the final computed geoid is 

given by: 

http://www.ngdc.noaa.gov/mgg/gebco
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     Re .  g fN N PITE N                      (32) 

Finally, the gravimetric geoid for different techniques are shown in Fig.6. 

 
Helmert’s second method of condensation 

(Max=7.83, Min=-8.99, Mean=0.31, Std=0.24) 

 

 
Generalized Helmert’s method of condensation (condensation depth=32 km) 

(Max=32.85, Min=-39.29,Mean=5.21, Std=10.32) 

 

 
Airy-Heiskanen model (Max=32.79, Min=-35.79,  

Mean=4.1, Std=10.46) 

Fig.4: Direct terrain effect on gravity for different topographic-compensation models for 

Egypt (all units in mGal) 

 
Helmert’s second method of condensation 

(Max=-.0064, Min=-.053, Mean=-0.063, Std=0.001) 
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Generalized Helmert’s method of condensation (condensation depth=32 km) 

(Max=1.92, Min=0.72, Mean=1.18, Std=0.128) 

 

 
Airy-Heiskanen model (Max=1.56, Min=0.44, Mean=0.88, Std=0.122) 

 

Fig.5: Secondary indirect terrain effect on gravity for different topographic-compensation 

models for Egypt (all units in mGal) 

 
Helmert’s second method of condensation 

(Max=31.45, Min=13.57, Mean=21.60, Std=4.56) 

 

 
Generalized Helmert’s method of condensation (condensation depth=32 km) 

(Max=32.74, Min=13.78, Mean=21.48, Std=4.50) 
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Airy-Heiskanen model (Max=32.74, Min=14.70, Mean=21.97, Std=4.24) 

Fig.6: Gravimetric geoid for Egypt (all units in m) 
 

IV. CONCLUSIONS 
In this study, the direct topographic, the secondary indirect topographic and the primary indirect 

topographic effects for three gravity reduction techniques for Egypt are computed.  The effect of the far-zone 

topography is transformed into the spectral domain following Molodenskij’s approach. The formulae for the far-

zone effects show a sufficient accuracy for spherical caps larger than 0 3 o . The rest of the topography 

around the computation point are computed numerically. Then, the gravimetric geoid for Egypt has been 

computed for three different gravity reduction techniques. The results indicated that, the geoid calculated from 

Generalized Helmert model of condensation is approximately the same as the geoid computed from Helmert's 

first method of condensation. Also, there are differences between the geoid calculated from Airy-Heiskanen 

model and those calculated from Helmert's methods of condensation. The results indicated that there some 

differences between gravemtric geoids for Egypt computed in spite of  taking the far-zone effects of topography.  

The reasons for these differences are most probably happen as a results of interpolation errors and using 

constant density for the crust and muntle.   Finally, some investigations including the use of the adapted 

reference field technique with variable density contrast (Abd-Elmotaal and kühtreiber (2003) is required as there 

are some differences between geoid calculated in this investigation and the geoid calculated in this paper.  
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