A New Class of Contra Continuous Functions in Topological Spaces

¹C.Janaki, ²V.Jeyanthi

¹Department of Mathematics, L.R.G. Government College for Women, Tirupur-4, Tamil Nadu. ²Department of Mathematics, Sree Narayana Guru College, Coimbatore - 105, Tamil Nadu.

ABSTRACT:- In this paper, we introduce and investigate the notion of contra π gr-continuous, almost contra π gr-continuous functions and discussed the relationship with other contra continuous functions and obtained their characteristics.

Keywords:- Contra π gr-continuous, almost contra π gr-continuous, π gr-locally indiscrete, $T_{\pi gr}$ -space. AMS Subject Classification:- 54C08,54C10

I. INTRODUCTION

Generalized closed sets in a topological space were introduced by Levine[11] in 1970. N.Palaniappan[13,14] introduced regular generalized closed sets and regular generalized star closed sets. The concept of regular continuous functions was first introduced by Arya.S.P and Gupta.R [1]in the year 1974.Dontchev[2] introduced the notion of contra continuous functions in 1996. Jafari and Noiri[7] introduced contra pre-continuous functions. Ekici.E[4] introduced almost contra pre-continuous functions in 2004. The notion of contra π g-continuity was introduced by Ekici.E [5]in 2008.Jeyanthi.V and Janaki.C[9] introduced the notion of π gr-closed sets in topological spaces in 2012.

In this paper, the notion of contra π gr-continuity which is a stronger form of contra π g-continuity and their characterizations are introduced and investigated. Further, the notion of almost contra π gr-continuity is introduced and its properties are discussed.

II. PRELIMINARIES

In the present paper, the spaces X and Y always mean topological spaces (X,τ) and (Y,σ) respectively. For a subset A of a space , cl(A) and int(A) represent the closure of A and interior of A respectively.

Definition:2.1

A subset A of X is said to be regular open [13]if A=int(cl(A)) and its complement is regular closed. The finite union of regular open set is π -open set[21] and its complement is π -closed set. The union of all regular open sets contained in A is called rint(A)[regular interior of A] and the intersection of regular closed sets containing A is called rcl(A)[regular closure of A]

Definition:2.2

A subset A of X is called

1. gr -closed[12,14] if $rcl(A) \subset U$ whenever $A \subset U$ and U is open.

2. π gr-closed[9] if rcl(A) \subset U whenever A \subset U and U is π -open.

Definition:2.3

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called π gr-continuous[9] if f¹(V) is π gr-closed in X for every closed set V in Y. **Definition :2.4**

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called

(i)Contra continuous[2] if $f^{-1}(V)$ is closed in X for each open set V of Y.

(ii)Contra π g-continuous[5] if f⁻¹(V) is π g-closed in X for each open set V of Y.

(iii)Contra $\pi g\alpha$ -continuous [8] if $f^{-1}(V)$ is $\pi g\alpha$ -closed in X for each open set V of Y.

(iv)Contra π gb-continuous[18] if $f^{1}(V)$ is π gb-closed in X for each open set V of Y.

(v)Contra π^* g-continuous[6] if $f^1(V)$ is π^* g-closed in X for each open set V of Y.

(vi)Contra gr-continuous[12] if $f^{-1}(V)$ is gr-closed in X for each open set V of Y.

(vii) RC-continuous[5] if $f^{1}(V)$ is regular closed in X for each open set V of Y.

(viii)An R-map [5]if $f^{1}(V)$ is regular closed in X for every regular closed set V of Y.

(ix)Perfectly continuous [4] if $f^{1}(V)$ is clopen in X for every open set V of Y.

(x)rc-preserving [5]if f(U) is regular closed in Y for every regular closed set U of X.

(xi)A function f: $X \rightarrow Y$ is called regular set connected [5] if $f^{1}(V)$ is clopen in X for every

(xii)Contra R-map[5] if $f^{-1}(V)$ is regular closed in X for each regular open set V of Y.

(xiii)Almost continuous[15] if $f^{1}(V)$ is closed in X for every regular closed set V of Y.

Definition :2.5

A space (X,τ) is called

(i)a π gr-T_{1/2} space [8] if every π gr-closed set is regular closed.

(ii)locally indiscrete[20] if every open subset of X is closed.

(iii)Weakly Hausdorff [17] if each element of X is an intersection of regular closed sets.

(iv)Ultra hausdorff space[19], if for every pair of distinct point x and y in X, there exist

clopensets U and V in X containing x and y respectively.

(v)Hyper connected[20] if every open set is dense.

Definition : 2.6

A collection {Ai; $i \in \Lambda$ } of open sets in a topological space X is called open cover [16] of a subset B of X if $B \subset$

 \cup {Ai ; i $\in \Lambda$ } holds.

Definition : 2.7

A collection {Ai; $i \in \Lambda$ } of π gr-open sets in a topological space X is called π gr-open cover [10] of a subset B of X if $B \subset \bigcup$ {Ai ; $i \in \Lambda$ } holds.

Definition:2.8

A space X is called π gr-connected [10] provided that X is not the union of two disjoint non-empty π gr-open sets.

Definition:2.9[5]

Let S be a closed subset of X. The set $\cap \{U \in \tau/S \subset U\}$ is called the kernel of S and is denoted by Ker(S)

III. CONTRA π GR-CONTINUOUS FUNCTION.

Definition:3.1

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called Contra π gr-continuous if $f^{-1}(V)$ is π gr-closed in (X,τ) for each open set V of (Y,σ) .

Definition:3.2

A space (X,τ) is called

(i) π gr-locally indiscrete if every π gr-open set is closed.

(ii) $T_{\pi gr}$ -space if every πgr -closed is gr-closed.

Result:3.3

Contra Continuous and contra π gr-continuous are independent concepts.

Example:3.4

a) Let $X = \{a,b,c,d\} = Y, \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}, \sigma = \{\phi, Y, \{c\}\}.$ Let $f: X \rightarrow Y$ be an identity map. Here the inverse image of the element c in the open set of Y is closed in X but not π gr-closed in X. Hence f is contra continuous and not contra π gr-continuous.

b)Let $X=\{a,b,c,d\}=Y$, $\tau =\{\phi,X,\{a\},\{b\},\{a,b\},\{a,c\},\{a,b,c\},\{a,b,d\}\},\sigma =\{\phi,Y,\{d\},\{a,d\}\}$. Let f:X \rightarrow Y be an identity map. Here the inverse image of the elements in the open set of Y are π gr-closed in X but not closed in X.Hence f is contra π gr-continuous and not contra continuous.

Hence contra continuity and contra π gr-continuity are independent concepts.

Theorem:3.5

Every RC-continuous function is contra π gr-continuous but not conversely.

Proof: Straight Forward.

Example:3.6

Let $X=\{a,b,c,d\}=Y$, $\tau = \{\phi,X,\{a\},\{c,d\},\{a,c,d\}\},\sigma = \{\phi,Y,\{a\},\{a,b\}\}$ Let $f:X \rightarrow Y$ be defined by f(a)=b,f(b)=a,f(c)=c,f(d)=d. The inverse image of the element in the open set of Y is π gr-closed in X but not regular closed in X. Hence f is contra π gr- continuous and not RC-continuous.

Theorem:3.7

Every Contra gr-continuous function is contra π gr-continuous but not conversely.

Proof: Follows from the definition.

Example: 3.8

Let $X = \{a,b,c,d\}, \tau = \{\phi, X, \{c\}, \{d\}, \{c,d\}, \{b,d\}, \{a,c,d\}, \{b,c,d\}\}, \sigma = \{\phi, Y, \{a\}, \{a,d\}\}$. The inverse image of the element $\{a,d\}$ in the open set of Y is π gr-closed in X but not gr-closed. Hence f is contra π gr- continuous and not contra gr-continuous.

Theorem:3.9

Every contra π gr-continuous function is contra π g- continuous,contra π *g- continuous , contra π g α - continuous and contra π gb- continuous but not conversely.

Proof: Straight Forward.

Example:3.10

a)Let X= {a,b,c,d}, $\tau = \{\varphi, X, \{c\}, \{d\}, \{c,d\}, \{b,d\}, \{a,c,d\}, \{b,c,d\}\}$. Here the inverse image of the element {b} in the open set of (Y,σ) is πg -closed in X, but not πg -closed in X. Hence f is contra πg -continuous and not contra πg -continuous.

b)Let X= {a,b,c,d}, $\tau = \{\varphi, X, \{c\}, \{d\}, \{c,d\}, \{b,d\}, \{a,c,d\}, \{b,c,d\}\}, \sigma = \{\varphi, Y, \{b\}\}$. Here the inverse image of the element {b} in the open set of (Y,σ) is π^*g -closed in X, but not πgr -closed in X. Hence f is contra π^*g -continuous and not contra πgr -continuous.

c)Let X={a,b,c,d}=Y, $\tau = \{\phi, X, \{a\}, \{c,d\}, \{a,c,d\}\}, \sigma = \{\phi, Y, \{a\}, \{a,b,c\}\}$. Let f:X \rightarrow Y be an identity map.The inverse image of the element {a}in the open set (Y, σ) is π gb-closed but not π gr-closed.Hence f is contra π gb-continuous and not contra π gr-continuous.

d)Let X={a,b,c,d}=Y, $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}, \sigma = \{\phi, Y, \{c\}, \{d\}, \{c, d\}\}$.Let f:X \rightarrow Y be an identity map.The inverse image of all the elements in Y are $\pi g\alpha$ -closed but not πgr -closed.Hence f is contra $\pi g\alpha$ -continuous and not contra πgr -continuous.

Remark:3.11

The above relations are summarized in the following diagram.

Theorem:3.12

Suppose $\pi grO(X,\tau)$ is closed under arbitrary unions. Then the following are equivalent for a function f: (X, τ) \rightarrow (Y, σ):

1. f is contra π gr-continuous.

2. For every closed subset F of Y, $f^{-1}(F) \in \pi \text{grO}(X, \tau)$

3. For each $x \in X$ and each $F \in C(Y, f(x))$, there exists a set $U \in \pi GRO(X, x)$ such that $f(U) \subset F$.

Proof:(1) \Leftrightarrow (2):Let f is contra π gr-continuous. Then f¹(V) is π gr-closed in X for every open set V of Y.(i.e) f

¹(F) is π gr-open in X for every closed set F of Y. Hence

 $f^{1} \in \pi grO(X).$

 $(2)\Rightarrow(1)$:Obvious.

(2)⇒(3) :For every closed subset F of Y, $f^{-1}(F) \in \pi GRO(X)$. Then for each x∈X and each F∈C(Y,f(x)), there exists a set U $\in \pi GRO(X,x)$ such that $f(U) \subset F$.

 $(3)\Rightarrow(2)$: For each $x\in X$, $F\in C(Y,f(x))$, there exists a set $U_x \in \pi GRO(X,x)$ such that $f(U_x) \subset F$. Let F be a closed set of Y and $x\in f^1(F)$. Then $f(x)\in F$, there exist $U\in \pi GRO(X,x)$ such that $f(U)\subset F$. Therefore, $f^1(F)=\cup \{U_x:x\in f^1(F)\}$. Hence $f^1(F)$ is π gr-open.

Theorem:3.13

If f:X \rightarrow Y is contra π gr-continuous and U is open in X. Then f/U : (U, τ) \rightarrow (Y, σ) is contra π gr-continuous.

Proof: Let V be any closed set in Y. Since $f: (X,\tau) \to (Y,\sigma)$ is contra π gr-continuous, $f^{-1}(V)$ is π gr-open in X, $(f/U)^{-1}(V) = f^{-1}(V) \cap U$ is contra π gr-open in X. Hence $f((f/U)^{-1}(V))$ is π gr-open in U.

Theorem:3.14

If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is πgr -continuous and the space (X,τ) is πgr -locally indiscrete ,then f is contra continuous.

Proof:Let V be a open set in (Y,σ) . Since f is π gr-continuous, $f^1(V)$ is open in X. Since X is locally π gr-indiscrete $f^1(V)$ is closed in X.Hence f is contra continuous.

Theorem:3.15

If a function f:X \rightarrow Y is contra π gr-continuous, X is a π gr- T_{1/2}- space, then f is RC- continuous.

Proof: Let V be open in Y. Since f is contra π gr-continuous, $f^{-1}(V)$ is π gr-closed in X.Since X is a π gr-T_{1/2}-space, $f^{-1}(V)$ is regular-closed in X.Thus for the open set V of Y, $f^{-1}(V)$ is regular closed in X. Hence f is RC-continuous.

Theorem:3.16

I f a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra π gr-continuous, rc-preserving surjection and if X is a π gr - T_{1/2}-space, then Y is locally indiscrete.

Proof: Let V be open in Y. Since f is contra π gr-continuous, f¹(V) is π gr- closed in X. Since X is a π gr-T_{1/2} - space, f¹(V) is regular closed in X. Since f is rc-preserving surjection, f(f¹(V)) = V is regular closed in Y. Thus cl(V) = cl(int(V)) ⊂ cl(int(cl(V)))⊂V.Hence V is closed in Y.Therefore, Y is locally indiscrete.

Theorem:3.17

If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra π gr-continuous and X is a π gr-space, then f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra gr-continuous.

Proof:Let V be an open set in Y. Since f is contra π gr-continuous, $f^{1}(V)$ is π gr-closed in X. Since X is a $T_{\pi gr}$ -space, $f^{1}(V)$ is gr-closed in X. Thus for every open set V of Y, $f^{1}(V)$ is gr-closed. Hence f is contra gr-continuous.

Theorem:3.18

Suppose $\pi GRO(X,\tau)$ is closed under arbitrary unions, let f: X \rightarrow Y be a function and {U_i : i \in I=1,2,,,,} be a cover of X such that U_i $\in \pi GRC(X,\tau)$ and regular open for each i \in I.If f/U_i :(U_i, τ/U_i) \rightarrow (Y, σ) is contra π gr-continuous for each i \in I, then f is contra π gr-continuous.

Proof: Suppose that F is any closed set of Y.

We have $f^{-1}(F) = \bigcup \{f \in F\}$

¹(F) $\cap U_i:i \in I$ = $\cup \{(f/U_i)^{-1}(F) : i \in I\}$. Since (f/U_i) is contra πgr -continuous for each $i \in I$, it follows that $(f/U_i)^{-1}(F) \in \pi GRO(U_i)$. $\Rightarrow (f/U_i)^{-1}(F) \in \pi GRO(X)$ and hence f is contra πgr -continuous.

Theorem:3.19

Suppose $\pi GRO(X,\tau)$ is closed under arbitrary unions. If f:X \rightarrow Y is contra π gr-continuous if Y is regular, then f is π gr-continuous.

Proof:Let x be an arbitrary point of X and V be an open set of Y containing f(x). The regularity of Y implies that there exists an open set W in Y containing f(x) such that $cl(W) \subset V$. Since f is contra π gr-continuous, then there exists $U \in \pi GRO(X,x)$ such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Hence f is π gr-continuous.

Theorem:3.20

Suppose that $\pi GRC(X)$ is closed under arbitrary intersections . Then the following are equivalent for a function f: $X \rightarrow Y$.

1) f is contra π gr-continuous.

2)The inverse image of every closed set of Y is π gr-open.

3)For each $x \in X$ and each closed set B in Y with $f(x) \in B$, there exists a πgr -open set A in X such that $x \in A$ and $f(A) \subset B$.

4) $f(\pi gr-cl(A))$ ⊂Ker f(A) for every subset A of X.

5)πgr-cl($f^{-1}(B)$)⊂ $f^{-1}(Ker(B))$ for every subset B of Y.

Proof:

 $(1)\Rightarrow(2)$ and $(2)\Rightarrow(1)$ are obviously true.

(1)⇒(3):Let x∈X and B be a closed set in Y with $f(x)\in B$. By (1), it follows that $f^{-1}(Y-B) = X - f^{-1}(B)$ is π gr-closed and so $f^{-1}(B)$ is π gr-open.

Take $A = f^{-1}(B)$. We obtain that $x \in A$ and $f(A) \subset B$

 $(3) \Rightarrow (2)$:Let B be a closed set in Y with $x \in f^{1}(B)$. Since $f(x) \in B$, by (3), there exists a π gr-open set A in X containing x such that $f(A) \subset B$. It follows that $x \in A \subset f^{1}(B)$.Hence $f^{1}(B)$ is π gr-open.

 $(2)\Rightarrow(1)$:Obvious.

(2) \Rightarrow (4): Let A be any subset of X. Let $y \notin \text{Ker } f(A)$. Then there exists a closed set F containing y such that $f(A) \cap F = \varphi$. Hence, we have $A \cap f^1(F) = \varphi$. $\pi \text{gr-cl}(A) \cap f^1(F) = \varphi$. Thus $f(\pi \text{gr-cl}(A)) \subset F = \varphi$ and $y \notin f(\pi \text{gr-cl}(A))$ and hence $f(\pi \text{gr-cl}(A)) \subset \text{Ker } f(A)$ (4) \Rightarrow (5): Let B be any subset of Y. By (4), $f(\pi \text{gr-cl}(f^1(B)) \subset \text{Ker } B$ and $\pi \text{gr-cl}(f^1(B)) \subset f$

(4)⇒(5): Let B be any subset of Y. By (4), $f(\pi gr-cl(f^{-1}(B)) \subset Ker B and ^{-1}(ker B).$

 $(5) \Rightarrow (1)$:Let B be any open set of Y. By (5), $\pi \text{gr-cl}(f^{-1}(B)) \subset f^{-1}(\text{KerB}) = f^{-1}(B)$

 π gr-cl(f¹(B)) = f¹(B), We obtain f¹(B) is π gr-closed in X.

Hence f is contra π gr-continuous.

IV. ALMOST CONTRA π GR-CONTINUOUS FUNCTIONS.

Definition:4.1

A function $f:X \rightarrow Y$ is said to be almost contra continuous [4] if $f^{1}(V)$ is closed in X for each regular open set V of Y.

Definition:4.2

A function $f:X \to Y$ is said to be almost contra π gr-continuous if $f^{-1}(V)$ is π gr-closed in X for each regular open set V of Y.

Definition:4.3

A topological space X is said to be πgr - T_1 - space if for any pair of distinct points x and y, there exists a πgr -open sets G and H such that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$.

Definition:4.4

A topological space X is said to be π gr-T₂-space if for any pair of distinct points x and y, there exists disjoint π gr-open sets G and H such that x \in G and y \in H.

Definition:4.5

A topological space X is said to be π gr-Normal if each pair of disjoint closed sets can be separated by disjoint π gr-open sets.

Definition:4.32

A function $f: X \to Y$ is called Weakly π gr-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \pi$ grO(X,x) such that $f(U) \subset cl(V)$.

Definition:4.7

A space X is said to be

1. π gr-compact[10] if every π gr-open cover of X has a finite sub-cover.

2.Nearly compact[16] if every regular open cover has a finite subcover.

3.Nearly lindelof [16] if every regular open cover of X has a countable subcover.

4.S-lindelof [4]if every cover of X by regular closed sets has a countable subcover.

5.S-closed[3] if every regular closed cover of X has a finite subcover.

Definition:4.8

A space X is said to be

1. π gr-lindelof if every π gr-open cover of X has a countable subcover.

2. Mildly π gr-compact if every π gr-clopen cover of X has a finite subcover.

3. Mildly π gr-lindelof if every π gr-clopen cover of X has a countable subcover.

4. Countably π gr-compact if every countable cover of X by π gr-open sets has a finite

subcover.

Theorem:4.9

Suppose πgr -open set of X is closed under arbitrary unions. The following statements are equivalent for a function f: X \rightarrow Y.

(1) f is almost contra π gr- continuous.

(2) $f^{-1}(F) \in \pi GRO(X, \tau)$ for every F∈RC(Y).

(3)For each $x \in X$ and each regular closed set F in Y containing f(x), there exists a πgr -

open set U in X containing x such that $f(U) \subset F$.

(4)For each $x \in X$ and each regular open set V in Y not containing f(x), there exists a π gr-closed set K in X not containing x such that $f^{-1}(V) \subset K$.

(5) f^{-1} (int (cl(G))∈ π GRC(X, τ) for every open subset G of Y.

(6) $f^{1}(cl(int(F))) \in \pi GRO(X,\tau)$ for every closed subset F of Y.

Proof: (1) \Rightarrow (2):Let $F \in RC(Y,\sigma)$. Then $Y - F \in RO(Y,\sigma)$. Since f is almost contra π gr-continuous, $f^{-1}(Y - F) = X - f^{-1}(F) \in \pi GRC(X)$. Hence $f^{-1}(F) \in \pi GRO(X)$.

 $(2) \Rightarrow (1): \text{Let } V \in \text{RO}(Y, \sigma). \text{ Then } Y - V \in \text{RC}(Y, \sigma). \text{ Since for each } F \in \text{RC}(Y, \sigma), \qquad f^{1}(F) \in \pi \text{GRO}(X).$ $\Rightarrow f^{1}(Y - V) = X - f^{1}(V) \in \pi \text{GRO}(X)$

 $\Rightarrow f^{-1}(V) \in \pi GRC(X)$

 \Rightarrow f is almost contra π gr-continuous.

(2)⇒(3):Let F be any regular closed set in Y containing f(x). $f^{1}(F) \in \pi GRO(X,\tau)$, $x \in f^{1}(F)$.By Taking U= $f^{1}(F)$, $f(U) \subset F$.

 $(3) \Rightarrow (2)$:Let $F \in RC(Y,\sigma)$ and $x \in f^{-1}(F)$. From (3), there exists a π gr-open set U in X containing x such that $U \subset f^{-1}(F)$. We have $f^{-1}(F) = \cup \{U: x \in f^{-1}(F)\}$. Thus $f^{-1}(F)$ is π gr-open.

 $(3)\Rightarrow(4)$:Let X be a regular open set in Y not containing f(x). Then Y–V is a regular closed set containing f(x). By (3), there exists a π gr-open set U in X containing x such that $f(U) \subset Y-V$. Hence $U \subset f^1(Y-V) \subset X-f^1(V)$. Then $f^1(V) \subset X-U$.

Take K = X–U. We obtain a π gr-closed set K in X not containing x such that $f^{-1}(V) \subset K$.

 $(4) \Rightarrow (3)$ Let F be a regular closed set in Y containing f(x). Then Y-F is a regular open set in Y containing f(x). By (4), there exists a π gr-closed set K in X not containing x such that $f^1(Y-F) \subset K$, $X-f^1(F) \subset K$. Hence X-K $\subset f^1(F)$. Hence $f(X-K) \subset F$. Take U= X-K, $f(U) \subset F$. Then U is a π gr-open set in X containing x such that $f(U) \subset F$.

(1) \Rightarrow (5):L et G be an open subset of Y. Since in(cl(G)) is regular open, then by (1),

 $f^{1}(int(cl(G))\in \pi GRC(X,\tau))$

 \Rightarrow f is almost contra π gr-continuous.

```
(5)⇒(1):Let V∈RO(Y,\sigma). Then V is open in X. By (5), f<sup>-1</sup>(int (cl(V)) ∈πGRC(X,τ)
```

 \Rightarrow f⁻¹(V) $\in \pi GRC(X,\tau)$

 \Rightarrow f is almost contra π gr-continuous.

 $(2) \Leftrightarrow (6)$ is similar to $(1) \Leftrightarrow (5)$

Theorem:4.10

Every contra π gr- continuous function is almost contra π gr-continuous but not conversely.

Proof: Straight forward.

Example:4.11

Let $X = \{a,b,c,d\}, \quad \tau = \{\phi, X, \{a\}, \{c,d\}, \{a,c,d\}\}, \quad \pi \text{gr-closed set=}\{\phi, X, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}\}.$ Let $Y = \{a,b,c,d\}, \quad \sigma = \{\phi,Y, \{a\}, \{a,b\}\}.$ Let f be an identity map. The inverse image of open set in Y is not $\pi \text{gr-closed in } X$. But the inverse image of regular open set in Y is $\pi \text{gr-closed in } X$. But the inverse image of regular open set in Y is $\pi \text{gr-closed in } X$. But the inverse image of regular open set in Y is $\pi \text{gr-closed in } X$. But the inverse image of regular open set in Y is $\pi \text{gr-closed in } X$.

Theorem:4.12

Every regular set connected function is almost contra π gr-continuous but not conversely.

Example:4.13

Let $X = \{a,b,c\}, \quad \tau = \{\phi, X, \{a\}, \{b\}, \{a,c\}\}, \{a,c\}\}, \quad \tau^c = \{\phi, X, \{b,c\}, \{a,c\}, \{c\}, \{b\}\}, \quad \pi gr-closed set=\{\phi, X, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,c\}, \{b,c\}\}.$ Let $Y = \{a,b,c\}, \quad \sigma = \{\phi, Y, \{a\}, \{b\}, \{a,b\}\}.$ Let f be an identity map. The inverse image of regular open set $\{a\}$ is not clopen in X. But the inverse image of open set in Y is πgr -closed in X. Hence f is almost contra πgr -continuous and not regular set connected.

Theorem:4.14

Let $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be two functions. Then the following properties hold.

- a)If f is almost contra π gr-continuous and g is regular set connected, then gof: X \rightarrow Z is almost contra π gr-continuous and almost π gr-continuous.
- b) If f is almost contra π gr-continuous and g is perfectly continuous, then gof: X \rightarrow Z is π gr-continuous and contra π gr-continuous.
- c) If f is contra π gr-continuous and g is regular set connected, then gof: X \rightarrow Z is π gr-continuous and almost π gr-continuous.

Proof:

a)Let $V \in RO(Z)$. Since g is regular set connected, $g^{-1}(V)$ is clopen in Y. Since f is almost contra πgr -continuous, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is πgr -open and πgr -closed. Therefore, (gof) is almost contra πgr -continuous and almost πgr -continuous

b) Let V be open in Z. Since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y.Since f is almost contra π gr-continuous, $f^{1}[g^{-1}(V)] = (gof)^{-1}(V)$ is π gr-open and π gr-closed.Hence gof is contra π gr-continuous and π gr-continuous.

c) Let V \in RO(Z). Since g is regular set connected, g⁻¹(V) is clopen in Y. Since f is a contra π gr-continuous, f⁻¹[g⁻¹(V)] = (gof)⁻¹(V) is π gr-closed in X. Therefore, (gof) is π gr-continuous and almost π gr-continuous. **Theorem:4.15**

If f:X \rightarrow Y is an almost contra π gr-continuous, injection and Y is weakly hausdorff, then X is π gr-T₁.

Proof: Suppose Y is weakly hausdorff. For any distinct points x and y in X, there exists V and W regular closed sets in Y such that $f(x) \in V, f(y) \notin V, f(y) \in W$ and $f(x) \notin W$. Since f is almost contra π gr-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are π gr-open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is π gr-T₁.

Corollary:4.16

If f:X \rightarrow Y is a contra π gr-continuous injection and Y is weakly hausdorff, then X is π gr-T₁.

Proof: Since every contra π gr-continuous function is almost contra π gr-continuous, the result of this corollary follows by using the above theorem.

Theorem:4.17

If $f:X \rightarrow Y$ is an almost contra π gr-continuous injective function from space X to a ultra Hausdorff space Y, then X is π gr-T₂.

Proof: Let x and y be any two distinct points in X. Since f is injective, $f(x) \neq f(y)$ and Y is Ultra Hausdorff space, there exists disjoint clopen sets U and V of Y containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint π gr-open sets in X. Therefore, X is π gr-T₂.

Theorem:4.18

If f:X \rightarrow Y is an almost contra π gr-continuous injection and Y is Ultra Normal. Then X is π gr-normal.

Proof: Let G and H be disjoint closed subsets of X. Since f is closed and injective, f(E) and f(F) are disjoint closed sets in Y. Since Y is Ultra Normal, there exists disjoint clopen sets U and V in Y such that $f(G) \subset U$ and $f(H) \subset V$. Hence $G \subset f^1(U)$, $H \subset f^1(V)$. Since f is an almost contra π gr-continuous injective function, $f^1(U)$ and f $^1(V)$ are disjoint π gr-open sets in X. Hence X is π gr- Normal.

Theorem:4.20

If f: $X \rightarrow Y$ is an almost contra π gr-continuous surjection and X is π gr-connected space, then Y is connected.

Proof: Let $f:X \to Y$ be an almost contra π gr-continuous surjection and X is π gr-connected space. Suppose Y is not connected space, then there exists disjoint open sets U and V such that Y=UUV. Therefore, U and V are clopen in Y. Since f is almost contra π gr-continuous, $f^{1}(U)$ and $f^{1}(V)$ are π gr-open sets in X. Moreover, $f^{1}(U)$ and $f^{1}(V)$ are non-empty disjoint π gr-open sets and X= $f^{1}(U)\cup f^{1}(V)$. This is a contradiction to the fact that X is π gr-connected space. Therefore, Y is connected.

Theorem:4.21

If X is π gr-Ultra connected and f:X \rightarrow Y is an almost contra π gr-continuous surjective, then Y is hyper connected.

Proof: Let X be a π gr-Ultra connected and f: X \rightarrow Y is an almost contra π gr-continuous surjection. Suppose Y is not hyper connected. Then there exists an open set V such that V is not dense in Y. Therefore, there exists non-empty regular open subsets B₁ = int(cl(V)) and B₂= Y-cl(V) in Y. Since f is an almost contra π gr-continuous surjection, f¹(B₁) and f¹(B₂) are disjoint π gr-closed sets in X.This is a contradiction to the fact that X is π gr-ultra connected. Therefore, Y is hyper connected.

Theorem:4.22

If a function f: $X \rightarrow Y$ is an almost contra π gr-continuous, then f is weakly π gr-continuous function.

Proof: Let $x \in X$ and V be an open set in Y containing f(x). Then cl(V) is regular closed in Y containing f(x). Since f is an almost contra π gr-continuous function for every regular closed set $f^1(V)$ is π gr-open in X.Hence $f^1(cl(V))$ is π gr-open set in X containing x.Set $U = f^1(cl(V))$, then $f(U) \subset f(f^1(cl(V)) \subset cl(V)$.This shows that f is weakly π gr-continuous function.

Theorem:4.23

Let f: X \rightarrow Y be an almost contra π gr-continuous surjection. Then the following properties hold:

- 1. If X is π gr-compact, then Y is S-closed.
- 2. If X is countably π gr-closed, then Y is countably S-closed.
- 3. If X is π gr-lindelof, then Y is S-lindelof.

Proof:

1)Let $\{V_{\alpha}: \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra π gr-continuous, $\{f^1\{V_{\alpha}\}: \alpha \in I\}$ is π gr-open cover of X. Since X is π gr-compact, there exists a finite subset I_o of I such that $X = \bigcup \{f^1\{V_{\alpha}\}: \alpha \in I_o\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}: \alpha \in I_o\}$ is finite sub cover of Y. Therefore, Y is S-closed.

2) Let $\{V_{\alpha}:\alpha \in I\}$ be any countable regular closed cover of Y. Since f is almost contra πgr -continuous, $\{f^{-1}\{V_{\alpha}\}:\alpha \in I\}$ is countable πgr -open cover of X. Since X is countably πgr -compact, there exists a finite subset I_{o} of I such that $X=\cup\{f^{-1}\{V_{\alpha}\}:\alpha \in I_{o}\}$. Since f is surjective $Y=\cup\{V_{\alpha}:\alpha \in I_{o}\}$ is finite subcover for Y. Therefore, Y is countably S-closed.

3)Let $\{V_{\alpha}:\alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra π gr-continuous, $\{f^{1}\{V_{\alpha}\}:\alpha \in I\}$ is π gr-open cover of X. Since X is π gr-lindelof, there exists a countable subset I_{o} of I such that $X=\cup\{f^{1}\{V_{\alpha}\}:\alpha \in I_{o}\}$. Since f is surjective, $Y=\cup\{V_{\alpha}:\alpha \in I_{o}\}$ is finite sub cover of Y. Therefore Y is S-lindelof.

Theorem:4.24

Let f: $X \rightarrow Y$ be an almost contra π gr-continuous and almost continuous surjection. Then the following properties hold.

(1)If X is mildly π gr-closed, then Y is nearly compact.

(2)If X is mildly countably π gr-compact, then Y is nearly countably compact.

(3)If X is mildly π gr-lindelof, then Y is nearly lindelof.

Proof:

1) Let $\{V_{\alpha}:\alpha \in I\}$ be any open cover of Y. Since f is almost contra πgr -continuous and almost πgr continuous function, $\{f^1\{V_{\alpha}\}:\alpha \in I\}$ is πgr -clopen cover of X.Since X is mildly πgr -compact, there exists a finite subset I_o of I such that $X=\cup\{f^1\{V_{\alpha}\}:\alpha \in I_o\}$ Since f is surjective, $Y==\cup\{V_{\alpha}:\alpha \in I_o\}$ is finite subcover for Y. Therefore, Y is nearly compact.

2) Similar to that of (1).

3)Let $\{V_{\alpha}:\alpha \in I\}$ be any regular open cover of Y. Since f is almost contra π gr-continuous and almost π gr-continuous function, $\{f^1\{V_{\alpha}\}:\alpha \in I\}$ is π gr-closed cover of X.Since X is mildly π gr-lindelof, there exists a countable subset I_o of I such that $X=\cup\{f^1\{V_{\alpha}\}:\alpha \in I_o\}$. Since f is surjective, $Y==\cup\{V_{\alpha}:\alpha \in I_o\}$ is finite subcover for Y. Therefore, Y is nearly lindelof.

REFERENCES

- [1] Arya.S.P and Gupta.R(1974), On Strongly continuous functions, Kyungpook Math. J., 14: 131-143.
- [2] J.Dontchev, Contra continuous functions and Stronglly S-closed spaces, Internat. J. Math. Sci., 19(1996), 15-31.
- [3] K.Dlaska, N.Ergun and M.Ganster, Countably S-closed spaces, Mathematica Slovaca, 44:337:348,1994.
- [4] E.Ekici, Almost contra pre-continuous functions, Bull. Malaysian Math.Sci. Soc., 27:53:65,2004.
- [5] E. Ekici, On Contra π g-continuous functions, Chaos, Solitons and Fractals, 35(2008), 71-81.
- [6] Ganes M Pandya, Studies on a new class of generalized sets via π -open set, Ph.D Thesis, Bharathiar University, Coimbatore (2011)
- [7] Jafari .S and Noiri.T. On contra pre-continuous functions, Bull. Malays Math Sci Soc 2002:25: 1 15-28.
- [8] Janaki.C, Studies on $\pi g\alpha$ -closed sets in topology, Ph.D Thesis, Bharathiar University, Coimbatore(2009)
- [9] Jeyanthi.V and Janaki.C, Jeyanthi.V and Janaki.C, πgr-closed sets in topological spaces, Asian Journal of Current Engg. Maths 1:5 sep 2012, 241-246.
- [10] Jeyanthi.V and Janaki.C, On πgr-Continuous functions, IJERA, Vol 3, Issue 1, Jan-Feb 2013, pp.1861-1870.
- [11] Levine.N, generalized closed sets in topology, Rend.circ. Mat .Palermo , 19 (1970) ,89-96.
- [12] S.I. Mahmood, On Generalized Regular Continuous Functions in Topological spaces, Ibn Al- Haitham Journal for pure and applied sience, No.3, Vol .25,377-385 ,2012.
- [13] Palaniappan.N and Rao.K.C, Regular generalized closed sets, Kyungpook Math. J.33(1993).211-219.
- [14] Palaniappan.N, Regular generalized star open and generalized star regular open sets in topology,J.Indian Acad.Math. Vol.23, No.2(2001),197-204.
- [15] Singal M.K and Singal A.R, Almost continuous mappings, Yokohama Math J., 16(1968)63-73.
- [16] Singal M.K and Singal A.R, On Nearly compact spaces, Bol Unione mat Ital,2-702:710,1969.
- [17] Soundararajan T, Weakly Hausdorff spaces and the cardinality of topological spaces, In: General topology and its relation to modern analysis and algebra,III,Proc. Conf. Kanpur, 1968, Academia,Prague 1971.p.301-6.
- [18] Sreeja .D and Janaki.C,On Contra πgb-continuous functions in topological spaces, International Journal of Statistika and Mathematika, E-ISSN-2239-8605, Vol 1, issue 2, 2011,pp 46-51.
- [19] R. Staum, The algebra of bounded continuous functions into a non-archimedian Pacific.J.Math., 50:169:185,1974.
- [20] Steen L.A and Jr. J.A. Seebach ,Counter examples in topology, A Holt.New York, Rienhart and Winston, 1970.
- [21] Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl Akad Nauk SSSr,178(1968),778-779.