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Abstract: The aim of this research to show some standard of fact of special relativity theory can be     derived 

from the calculus of variations. To give the essential of the method ,it suffices to suppose that M is one –

dimensional ,so that the Newtonian picture is of a particle of mass m moving on a line with coordinate x and 

potential energy  xV .We deduced Galilean transformation via calculus of variations 
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I. Introduction 
The Galilean transformation is used to transform between the coordinates of two reference 

frames which differ only by constant relative motion within the constructs of Newtonian physics. This is 

the passive transformation point of view. The equations below, although apparently obvious, break down at 

speeds that approach the speed of light owing to physics described by relativity theory.Galileo formulated these 

concepts in his description of uniform motion. The topic was motivated by Galileo's description of the motion of 

a ball rolling down a ramp, by which he measured the numerical value for the acceleration of gravity near the 

surface of the Earth. The Galilean symmetries can be uniquely written as the composition of a rotation, 

a translation and a uniform motion of space-time. Let x represent a point in three-dimensional space, and ta 

point in one-dimensional time. A general point in space-time is given by an ordered pair  tx, . In this research 

we deduced galilean transformation via  so we define a variational principle is a scientific principle used within 

the calculus of variation, which develops general methods for finding functions which minimize or maximize 

the value of quantities that depends upon those functions. For example, to answer this question: "What is the 

shape of a chain suspended at both ends?" we can use the variational principle that the shape must minimize the 

gravitational potential energy. 

 

II. Variational Principle 

In classical mechanics the motion of a system with  n  degree of freedom  
n

i

ix 1 ,  motion of point 

mass can be expressed by the variational principle  
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  where the action S is a function of the motion  txx   of the system given by the Lagrangian 
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from the principle (11) ,then the following equation of motion in the form of Euler-Lagrange equations 
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As the generalized momentum is normally defined by 
ii
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L
P
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
 ,we can apply it to 

 pxtxx ,,


 ,where  pxtpp ii ,, ,can be solved with respect  to x ,if the  
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,is regular, then  the phase space  px, ,  pxtxx ,,


 . 

Given Euler equations for the extremals in coordinates free from  introducing the Cartan 1-form L ,a 1-

differential forms on   MT . This can be defined by using a coordinate system. We find it is useful to see 

a more general definition in term of an arbitrary basis  n ,...,1  of 1-differential forms on an open set  U  of  

M ,then denoted by  iy ,  the real –value functions defined by  MonTi ;hence, also on  n ,...,1 , 

where    ,vvy ii   for  MTv .At  any rate  dtdy,,1 , a local basis for differential forms on 

  MT ,suppose that  

                                                  dtLdyLLdL iiinii   ,                                                 (3) 

 

now we obtain 

                                                           dtLyLLL iinin     , where ii dx  .             (4) 

 

Let us verify that L  remains unchanged when a different basis   ,of  

1-form for U is used. We state another property of )(L  if  btatt  ),(  

is a curve in M and if  
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                                            (5) 

 is extended curve on   MT ,then    
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III. Galilean Transformations 
Well, this innocuous looking claim has some very perplexing logical consequences with regard 

to relative velocities, where we have expectations that follow, seemingly, from self-evident common sense. For 

instance, suppose the propagation velocity of ripples (water waves) in a calm lake is 0.5 m/s. If I am walking 

along a dock at 1 m/s and I toss a pebble in the lake, the guy sitting at anchor in a boat will see the ripples move 

by at 0.5 m/s but I will see them dropping back relative to me! That is, I can "outrun" the waves. In 

mathematical terms, if all the velocities are in the same direction (say, along x), we just add relative velocities: 

if vies the velocity of the wave relative to the water and u is my velocity relative to the water, then v', the 

velocity of the wave relative to me, is given by v' = v - u. This common sense equation is known as the Galilean 

velocity transformation- a big name for a little idea, it would seem. With a simple diagram, we can summarize 

the common-sense Galilean transformations.  
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First of all, it is self-evident that t'=t, otherwise nothing would make any sense at all. Nevertheless, we 

include this explicitly. Similarly, if the relative motion of O' with respect to O is only in the x direction, 

then y'=y and z'=z, which were true at t=t'=0, must remain true at all later times. In fact, the only coordinates 

that differ between the two observers are x and x'. After a time t, the distance (x') from O' to some 

obect A is less than the distance (x) from O to A by an amount ut, because that is how much closer O' 

has moved to A in the interim. Mathematically, x' = x - ut. 

The velocity  Av


  of A in the reference frame of O also looks different when viewed from O' - namely, we have 

to subtract the relative velocity of O' with respect toO, which we have labeled u


. In this case we 

picked  u


along , x  so that the vector uvv AA


   subtraction  becomes just v'Ax = vAx -

 u while v'Ay = vAy andv'Az = vAz. Let's summarize all these "coordinate transformations:" 
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This is all so simple and obvious that it is hard to focus one's attention on it. We take all these properties for 

granted - and therein lies the danger.A uniform motion, with velocity v, is given 

by     ttvxtx ,,  where v isin 
3 .A translation is given by: 

 

                                                  btaxtx  ,,                                                                   (7) 

 

where a in  
3  and b in   . A rotation is given by     tGxtx ,,  where  is an ort

33: G hogonal 

transformation. As a Lie group, the Galilean transformations have dimensions 1 

 

IV. Newton Lagrange Mechanics and Galilean Transformations 
The Newtonian Lagrangian  
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This Lagrangian is of the non homogeneous, regular type, so that its extremals come with their own 

parametrization.This parameter, of course, is identified with the physical time. 

http://en.wikipedia.org/wiki/Orthogonal_transformation
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Now L  defines a whole class of Lagrangians as  xV  runs over the class of suitable functions. Let   be a 

transformation of   spacetx , into itself which Lagrangian L of the same class, that is, 
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So that if   ttxt ,  is an extremal of L ,   ttt ,  is an extremal of L . Now it is easily seen that this 

requires that   dtdt  .That is     Ltconstt 
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possibilities for  ,suppose    ., txfx  Then  
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Forces   .tan tconstg    

Finally, then ,we see that   must be of the form  

 

                                                                   .,,   txtx                                          (13) 

 

 

Hence the symmetry group is the group of rigid motions of the real line. We also see that the symmetry group 

permuting this class of Lagrangians is the symmetry group of the Lagrangian for the extremals of the 

free Lagrangian. 

Now let us are looking for maps   of   spacetx ,  into itself which permute the extremals of  
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  is of the form  
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Setting the coefficient of dtxd   in     LdLd  
 equal to zero gives  
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This implies, since   txx ,,   are independent variables, 
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Hence, 
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Setting the coefficient of dtdx  in       LdLd  
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Finally, then,   is of the form:  

                                                       ttxtx ,,, .                                                   (22) 

 

 

Equation (22) is a Galilean transformation and equivalence equation (7). 

 

Conclusion: 
In this research we deduced Galilean transformation via calculus of variations, also 

 

 Its defining property can be but more physically in the following way: 

If      stsxs ,  is a curve in space-time, let 
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/ be the velocity of the curve. The Galilean 

transformations permute the curves of constant velocity. The coefficient   is the increment given to 

the velocity. The new coordinates for space-time introduced by a Galilean transformation then 

represent physically a coordinate system moving at constant velocity with respect to the old. 
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