On Generalised β-Connectedness In Isotonic Spaces

A.Francina Shalini and I.Arockiarani

Department of Mathematics, Nirmala College For Women, Coimbatore

Abstract: The purpose of this paper is to define and study β connectedness and β separated sets in generalized β closure spaces and discuss their properties. The notion of Z connectedness and strongly connectedness in isotonic spaces are also analysed.

Keywords: Generalized β closure spaces, β connectedness, β separated sets, Z connectedness, strongly connectedness.

I. Introduction & Preliminaries

The structure of closure spaces is more general than that of topological spaces. Hammer studied closure spaces extensively and a recent study on these spaces can be found in Stadler [8,9], Harris[5], Habil and Elzenati [4]. The following definition of a generalized closure space can be found in [4] and [9]. Let X be a set, $\mathcal{P}(X)$ be its power set and cl: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be any arbitrary set valued – function, called a closure function. We call cl (A), $A \subset X$, the closure of A and we call the pair (X,cl) a generalized closure space.

An operator $cl : P(X) \rightarrow P(X)$ is called **grounded** if $cl(\phi) = \phi$, **isotonic** if $A \subseteq B \subseteq X$ implies $cl(A) \subseteq cl(B)$, **expansive** if $A \subseteq cl(A)$ for every $A \subseteq X$, **idempotent** if cl(cl(A)) = cl(A) for every $A \subseteq X$ and **additive** if $cl(A \cup B) \subseteq cl(A) \cup cl(B)$ for all subsets A and B of X. **Definition: 1.1.**

- (i) The space (X, cl) is said to be **isotonic** if cl is grounded and isotonic.
- (ii) The space (X, cl) is said to be a **neighborhood space** if cl is grounded, expansive and isotonic.
- (iii) The space (X, cl) is said to be a **closure space** if cl is grounded, expansive, isotonic and idempotent.
- (iv) The space (X, cl) is said to be a **Cech closure space** if cl is grounded, expansive, isotonic and additive.
- (v) A subset A of X is said to be **closed** if cl(A) = A. It is open if its complement is closed.

II. Generalized β-Closure Space

Definition 2.1:

- (1) A generalized β -closure space is a pair (X, β cl) consisting of a set X and a β -closure function β cl, a function from the power set of X to itself.
- (2) The β -closure of a subset A of X, denoted β cl, is the image of A under β cl.
- (3) The β -exterior of A is β Ext(A) = X\ β cl(A), and the β -Interior of A is β Int(A) = X \ β cl(X\A).
- (4) A is β -closed if A = β cl(A), A is β -open if A = β Int(A) and N is a β -neighborhood of x if x ε βInt(N).

Definition 2.2: We say that a β -closure function β cl defined on X is:

- (1) β -grounded if $\beta cl(\phi) = \phi$
- (2) β -isotonic if $\beta cl(A) \subseteq \beta cl(B)$ whenever $A \subseteq B$
- (3) β -enlarging if $A \subseteq \beta cl(A)$ for each subset A of X
- (4) β -idempotent if $\beta cl(A) = \beta cl(\beta cl(A))$ for each subset A of X
- (5) β -sub-linear if $\beta cl(A \cup B) \subseteq \beta cl(A) \cup \beta cl(B)$ for all $A, B \subseteq X$
- (6) β -additive if $\bigcup_{i \in I} \beta \operatorname{cl}(A_i) = \beta \operatorname{cl}(\bigcup_{i \in I} A_i)$ for $A_i \subseteq X$

III. β – Separated Sets

Definition 3.1: In an generalized β -closure space (X, β cl), two subsets A, B \subseteq X are called β -separated if β cl(A) \cap B = A $\cap \beta$ cl(B) = φ .

Proposition 3.2: In an generalized β -closure space (X, β cl), the following two conditions are equivalent for all A, B \subseteq X:

1. A, B are β - separated.

2. There are $U \in N(A)$ and $V \in N(B)$ such that $A \cap V = U \cap B = \phi$.

Proof: By the definition of neighborhood if there exists U, V such that $A \subset \beta$ int(U),

 $B \subseteq \beta$ int (V), $A \cap V = \phi$, and $U \cap B = \phi$. We know that $A \cap V = \phi$ implies $V \subseteq X \setminus A$ and by isotonic property B $\subseteq \beta$ int(V) $\subseteq \beta$ int(X \ A). Then X \ β int(X \ A) \subseteq X \ β int(V) implies β cl(A) \subseteq X \ β int(V) \subset X\B and thus β cl(A) \cap B = ϕ . Similarly A \cap β cl(B) = ϕ .

Now suppose A and B are β - separated. Then $\beta cl(A) \cap B = \phi$ if and only if $B \subset X \setminus \beta cl(A) = \beta int(X \setminus A)$ A), i.e., $X \setminus A \in N(B)$. Thus there is $V \in N(B)$ such that $A \cap V = \phi$.

Similarly we have $A \cap \beta cl(B) = \phi$ if and only if $X \setminus B \in N(A)$, i.e., there is $U \in N(A)$ with $U \cap B = \phi$.

Proposition 3.3: Let $(X, \beta cl)$, be an generalized β -closure space and let $A, B \subseteq Y \subseteq X$. Then A and B are β -separated in (X, β cl) if and only if A and B are β -separated in (Y, β cl_Y).

Proof. Suppose A, B \subseteq Y and they are β -separated in X. Then we have $A \cap \beta cl(B) = \phi$ implies $A \cap \beta cl(B) = \phi$ $\beta cl(B) \cap Y = A \cap \beta cl_Y(B) = \phi$ and $\beta cl(A) \cap B = \phi$ implies $\beta cl_Y(A) \cap B = \phi$.

Conversely, If A and B are β -separated in Y. Assume $A \cap \beta cl_{Y}(B) = \phi$.

We have $A \cap \beta cl_{Y}(B) = A \cap Y \cap \beta cl(B) = A \cap \beta cl(B) = \phi$ since $A \subset Y$. Hence $A \cap \beta cl(B) = \beta cl(A) \cap B$ $= \phi$.

Proposition 3.4: In neighborhood spaces let $f: (X, \beta cl) \rightarrow (Y, \beta cl)$ be β - continuous and suppose

 $A, B \subset Y$ are β -separated. Then $f^{-1}(A)$ and $f^{-1}(B)$ are β -separated.

Proof. Suppose A and B are β -separated in Y then we have $\beta \operatorname{cl}(A) \cap B = \varphi$ and $A \cap \beta \operatorname{cl}(B) = \varphi$ we now prove that $f^{-1}(A)$ and $f^{-1}(B)$ are β separated in X. Let us take $\beta cl(A) \cap B = \varphi$. Then

 $f^{-1}(\beta \operatorname{cl}(A)) \cap f^{-1}(B) = \phi$. Since f is β continuous, $\beta \operatorname{cl}(f^{-1}(A)) \subseteq f^{-1}(\beta \operatorname{cl}(A))$, hence

 $\beta cl(f^{1}(A)) \cap f^{1}(B) \subseteq f^{1}(\beta cl(A)) \cap f^{-1}(B)$ implies $\beta cl(f^{1}(A)) \cap f^{1}(B) = \phi$.

Similarly $\beta \operatorname{cl}(B) \cap A = \phi$ implies $\beta \operatorname{cl}(f^{1}B) \cap f^{1}(A) = \phi$. Hence $f^{1}(A)$ and $f^{1}(B)$ are β -separated.

IV. **B** connectedness

Definition 4.1: A set $Y \in P(X)$ is β -connected in a generalized β closure space $(X, \beta cl)$ if

it is not a disjoint union of a nontrivial β -separated pair of sets A, Y \A, A $\neq \phi$, Y.

Definition 4.2: Let $(X, \beta cl)$ be a space and $x \in X$. The component C(x) of x

in X is the union of all β -connected subsets of X containing x.

Theorem 4.3: A set $Z \in P(X)$ is β -connected in an generalized β closure space $(X, \beta c)$ if and only if for each proper subset $A \subset Z$ holds $[\beta \operatorname{cl}(A) \cap (Z \setminus A)] \cup [\beta \operatorname{cl}(Z \setminus A) \cap A] \neq \phi$. This is known as Hausdorff-Lennes condition.

Definition 4.4 : Connectedness is closely related to separation .Two sets A, B $\in P(X)$ are β - separated if there are β -neighborhoods N' \in N (A) and N'' \in N (B) such that A \cap N' = N'' \cap B = ϕ ; they are β separated if there are β -neighborhoods N' \in N(A) and N" \in N(B) such that N' \cap N" = ϕ .

Theorem 4.5: A neighborhood space $(X, \beta cl)$ is β connected if and only if there are no nonempty disjoint β -open (closed) sets H and K in X with $X = H \cup K$.

Proof: Suppose that X is β -disconnected. Then $X = H \cup K$, where H, K are β -separated, disjoint sets. Since $H \cap \beta \operatorname{cl}(K) = \phi$, we have $\beta \operatorname{cl}(K) \subseteq X \setminus H \subseteq K$ and then, by definition of expanding $\beta cl(K) = K$. Since $\beta cl(H) \cap K = \phi$, a similarly H is a β -closed set.

Conversely, suppose that H and K are disjoint β -open sets such that $X = H \cup K$.

Now $K = X \setminus H$, and H is an β -open set, hence K is a β -closed set. Thus $H \cap \beta cl(K) =$

 $H \cap K = \phi$. Similarly $\beta cl(H) \cap K = \phi$. Thus H and K are β -separated and therefore X is β disconnected.

Proposition 4.6: If X and Y are β -connected in an generalized β chare space (X, β cl) and

 $X \cap Y = \phi$, then $X \cup Y$ is β -connected.

Proof: We use the Hausdorff-Lennes condition

 $[\beta cl(A) \cap (Y \cup Z) \setminus A] \cup [A \cap \beta cl((Y \cup Z) \setminus A)] =$

 $[\beta cl(A) \cap (Y \setminus A)] \cup [\beta cl(A) \cap (Z \setminus A)] \cup [A \cap \beta cl((Y \setminus A) \cup (Z \setminus A))] \supseteq$

 $\{ [\beta cl(A) \cap (Y \setminus A)] \cup [A \cap \beta cl(Y \setminus A)] \} \cup \{ [A \cap \beta cl(Z \setminus A)] \cup \beta cl(A) \cap (Z \setminus A)] \}$

If $A \cap Y$ or $A \cap Z$ is a proper subset of Y or Z, then one of the expression is non empty .Both the expressions are empty if and only if either A=Z and A \cap Y= ϕ or A \cap Z= ϕ and A=Y. This is impossible if $Y \cap Z \neq \phi$

Theorem 4.7: If $(X, \beta cl)$ is a neighborhood space then $\beta cl(Z)$ is β -connected whenever Z is β -connected.

Proof: Set $A' = Z \cap A$ and $A'' = A \setminus Z$. We then use the Hausdorff-Lennes condition

 $[\beta cl(A) \cap (\beta cl(Z) \setminus A)] \cup [\beta cl(\beta cl(Z) \setminus A) \cap A] \supseteq$

 $[(\beta cl(A') \cup \beta cl(A'')) \cup (Z \setminus A')] \cup [\beta cl(Z - A') \bigcap (A' \cup A'')] \supseteq$

 $\{ \left[\beta cl(A') \cap (Z \setminus A') \right] \cup \left[\beta cl(Z \setminus A') \cap A' \right] \} \left[\beta cl(Z - A') \cap A'' \right]$

Here we have used $Z - A \subseteq (\beta cl(Z) \setminus A') \setminus A'$ which is true only if $A \subseteq \beta cl(A)$ holds. If $A' \neq \phi$ then the term in the braces is nonempty because Z is β connected. By assumption if $A' = \phi$ then $A'' \subseteq \beta cl(Z) \setminus Z$ is nonempty and hence $\beta cl(Z \setminus A') \cap A'' = \beta cl(Z) \cap A'' = \phi$. Thus $\beta cl(Z)$ is β -connected.

Theorem 4.8: If $f : (X, \beta cl) \rightarrow (Y, \beta cl)$ is a β -continuous function between neighborhood spaces, and A is β connected in X, then f(A) is β -connected in Y.

Proof : Suppose f(A) is not β -connected. Then $f(A) = U \cup V$, where U and V are β -separated and non-empty. Thus $f^{-1}(U)$ and $f^{-1}(V)$ are β -separated. Clearly $A' = A \cap f^{-1}(U)$ and $A'' = A \cap f^{-1}(V)$ are both non-empty and also β -separated. Further $A' \cup A'' = A$ and hence A is not β -connected.

Theorem 4.9:Let $(X, \beta c)$ be a generalized β -closure space with β -grounded β -isotonic β -enlarging

 β Cl. Then, the following are equivalent:

(1) (X, β cl) is β -connected,

(2) X cannot be a union of nonempty disjoint β open sets.

Proof : (1) \Rightarrow (2): Let X be a union of nonempty disjoint β -open sets A and B. Then,

 $X = A \cup B$ and this implies that $B = X \setminus A$ and A is a β -open set. Thus, B is β -closed and hence $A \cap \beta$ $cl(B) = A \cap B = \phi$. Likewise, we obtain $\beta cl(A) \cap B = \phi$. Hence, A and B are β -closure-separated and hence X is not β -connected. This is a contradiction.

(2) \Rightarrow (1): Suppose that X is not β -connected. Then $X = A \cup B$, where A, B are disjoint β -separated sets, i.e $A \cap \beta cl(B) = \beta cl(A) \cap B = \phi$. We have $\beta cl(B) \subset X \setminus A \subset B$. Since βcl is β -enlarging, we get $\beta cl(B) = B$ and hence, B is β -closed. By using $\beta cl(A) \cap B = \phi$. and similarly, it is obvious that A is β -closed. This is a contradiction.

Definition 4.10: Let $(X, \beta cl)$ be a generalized β -closure space with β -grounded β -isotonic βcl . Then, $(X, \beta cl)$ is called a T₁- β -grounded β -isotonic space if $\beta cl(\{x\}) \subset \{x\}$ for all $x \in X$.

Theorem 4.11: Let $(X, \beta cl)$ be a generalized β -closure space with β -grounded β -isotonic

 β cl. Then, the following are equivalent:

(1) (X, β cl) is β -connected,

(2) Any β -continuous function f: X \rightarrow Y is constant for all T₁- β -grounded β -isotonic spaces Y = { 0, 1 }.

Proof : (1) \Rightarrow (2): Let X be β - connected. Suppose that f: X \rightarrow Y is β - continuous and it is not constant. Then there exists a set U \subset X such that U = f⁻¹({0}) and X\U = f⁻¹({1}). Since f is β continuous and Y is T₁- β - grounded β -isotonic space, then we have β cl(U) = β cl(f⁻¹({0})) \subset f⁻¹(β cl{0}) \subset f⁻¹({0}) = U and hence β cl(U) \cap (X\U) = ϕ . Similarly we have U $\cap \beta$ cl(X\U) = ϕ . This is a contradiction. Thus, f is constant.

$$= \beta cl (\mathbf{f}^{-1}(\mathbf{A})) \subset \mathbf{X} = \mathbf{f}^{-1}(\mathbf{A}) = \mathbf{f}^{-1}(\beta cl(\mathbf{A})).$$

If $A = \{0\}$, then $\mathbf{f}^{-1}(A) = U$ and hence $\beta cl(U) = \beta cl(\mathbf{f}^{-1}(A)) \subset U = \mathbf{f}^{-1}(A)$

 $= \mathbf{f}^{-1}(\beta cl(A))$. If $A = \{1\}$, then $\mathbf{f}^{-1}(A) = X \setminus U$ and hence

 $\beta cl(\mathbf{X} \setminus U) = \beta cl(\mathbf{f}^{-1}(A)) \subset \mathbf{X} \setminus U = \mathbf{f}^{-1}(A) = \mathbf{f}^{-1}(\beta c l(A))$. Hence, **f** is β continuous. Since **f** is not constant, this is a contradiction.

Theorem 4.12: Let $f: (X, \beta cl) \to (Y, \beta cl)$ and $g: (Y, \beta cl) \to (Z, \beta cl)$ be β continuous functions. Then, gof : $X \to Z$ is β continuous.

Proof : Suppose that **f** and g are β continuous. For all $A \subset Z$ we have $\beta cl(gof)^{-1}(A) = \beta cl(\mathbf{f}^{-1}(g^{-1}(A))) \subset \mathbf{f}^{-1}(\beta cl(g^{-1}(A))) \subset \mathbf{f}^{-1}(g^{-1}(\beta cl(A)))$

= (gof)⁻¹(β cl(A)). Hence, gof : X \rightarrow Z is β continuous.

Theorem 4.13: Let $(X, \beta cl)$ and $(Y, \beta cl)$ be generalized β -closure spaces with β -grounded β -isotonic βcl and $\mathbf{f} : (X, \beta cl) \rightarrow (Y, \beta cl)$ be a β continuous function onto Y. If X is β connected, then Y is β connected.

Proof: Let us suppose that $\{0, 1\}$ is a generalized β -closure spaces with β -grounded β -isotonic $\beta C1$ and $g: Y \rightarrow \{0, 1\}$ is a β continuous function. Since **f** is β continuous,

gof : $X \rightarrow \{0, 1\}$ is β continuous. Since X is β -connected, gof is constant and hence g is constant. Therefore Y is β connected.

Definition 4.14: Let $(Y, \beta cl)$ be a generalized β -closure space with β -grounded β -isotonic βcl and more than one element. A generalized β -closure space $(X, \beta cl)$ with β -grounded β -isotonic βcl is called $Y - \beta$ connected if any β - continuous function $f: X \to Y$ is constant.

Theorem 4.15: Let $(Y, \beta cl)$ be a generalized β -closure space with β -grounded β -isotonic β - enlarging βcl and more than one element. Then every $Y - \beta$ connected generalized β -closure space with β - grounded β -isotonic is β connected.

Proof : Let $(X, \beta cl)$ be a Y - β connected generalized β -closure space with β - grounded β -isotonic βcl . Suppose that $f : X \to \{0, 1\}$ is a β continuous function, where $\{0, 1\}$ is a T₁- β -grounded β -isotonic space. Since Y is a generalized β -closure space with β -grounded β -isotonic β -enlarging βcl and more than one element, then there exists a β continuous injection

g: $\{0, 1\} \rightarrow Y.gof : X \rightarrow Y$ is β continuous. Since X is Y - β connected, then gof is constant. Thus, f is constant and hence, by theorem 5.11 X is β connected.

Theorem 4.16: Let $(X, \beta cl)$ and $(Y, \beta cl)$ be generalized β -closure spaces with β -grounded β -isotonic βcl and $\mathbf{f} : (X, \beta cl) \rightarrow (Y, \beta cl)$ be a β continuous function onto Y. If X is Z- β connected, then Y is Z- β connected.

Proof : Suppose that $g: Y \to Z$ is a β continuous function. Then gof $: X \to Z$ is β continuous. Since X is Z- β connected, then gof is constant. This implies that g is constant. Thus, Y is Z- β connected. **5.Strongly** \Box **Connected Spaces**

Definition 5.1: A generalized β -closure space (X, β cl) is strongly β connected if there is no countable collection of pairwise β -closure-separated sets { A_n } such that X = \bigcup A_n.

Theorem 5.2: Every strongly β connected generalized β closure space with β -grounded β -isotonic β cl is β connected.

Theorem 5.3: Let $(X, \beta cl)$ and $(Y, \beta cl)$ be generalized β -closure spaces with β -grounded β -isotonic βcl and $\mathbf{f} : (X, \beta cl) \rightarrow (Y, \beta cl)$ be a β -continuous function onto Y. If X is strongly β connected, then Y is strongly β -connected.

Proof : Suppose that Y is not strongly β - connected. Then, there exists a countable collection of pairwise β - closure-separated sets $\{A_n\}$ such that $Y = \bigcup A_n$. Since $f^{-1}(A_n) \cap \beta cl(f^{-1}(A_m))$

 $\subset f^{-1}(A_n) \cap f^{-1}(\beta \operatorname{cl}(A_m)) = \varphi$ for all $n \neq m$, then the collection { $f^{-1}(A_n)$ } is pairwise β -closure-separated. This is a contradiction. Hence, Y is strongly β -connected.

Theorem 5.4: Let $(X, \beta cl_X)$ and $(Y,\beta cl_y)$ be generalized β -closure spaces. Then, the following are equivalent for a function $f: X \to Y$

(1) **f** is β -continuous,

(2) $\mathbf{f}^{-1}(\beta \operatorname{Int}(\mathbf{B})) \subseteq \beta \operatorname{Int}(\mathbf{f}^{-1}(\mathbf{B}))$ for each $\mathbf{B} \subseteq \mathbf{Y}$.

Theorem 5.5: Let $(X,\beta cl)$ be a generalized β -closure space with β -grounded β -isotonic β -additive βcl . Then $(X,\beta cl)$ is strongly β -connected if and only if $(X,\beta cl) Y - \beta$ -connected for any countable T_1 - β -grounded β -isotonic space $(Y,\beta cl)$.

Proof: (\Rightarrow) : Let $(X,\beta cl)$ be strongly β -connected. Suppose that $(X, \beta cl)$ is not $Y - \beta$ -connected for some countable T_1 - β -grounded β -isotonic space $(Y, \beta cl)$. There exists a β continuous function

f: $X \to Y$ which is not constant and hence K = f(X) is a countable set with more than one element. For each $y_n \in K$, there exists $U_n \subset X$ such that $U_n = f^{-1}(\{y_n\})$ and hence $Y = \bigcup U_n$.

Since f is β -continuous and Y is β -grounded, then for each $n \neq m$, $U_n \cap \beta cl(U_m) =$

$$\mathbf{f}^{-1}(\{ y_n \}) \cap \beta c (\mathbf{f}^{-1}(\{ y_m \})) \subset \mathbf{f}^{-1}(\{ y_n \}) \cap \mathbf{f}^{-1}(\beta C l(\{ y_m \})) \subset \mathbf{f}^{-1}(\{ y_n \})$$

 $\cap \mathbf{f}^{-1}(\{\mathbf{y}_{\mathbf{m}}\}) = \phi$. This contradicts the strong β -connectedness of X. Thus, X is Y - β connected.

(\Leftarrow):Let X be Y - β connected for any countable T₁- β -grounded β -isotonic space (Y, β cl). Suppose that

X is not strongly β -connected. There exists a countable collection of pairwise β -closure-separated sets $\{U_n\}$ such that $X = \bigcup U_n$. Consider the space (Z, β cl), where Z is the set of integers and β cl : P(Z) \rightarrow P(Z) is defined by $\beta cl(K) = K$ for each $K \subset Z$. Clearly (Z, βcl) is a countable T_1 - β -grounded β isotonic space. Put $U_k \in \{U_n\}$. We define a function

 $\mathbf{f}: \mathbf{X} \to \mathbf{Z} \text{ by } \mathbf{f}(\mathbf{U}_k) = \{ \mathbf{x} \} \text{ and } \mathbf{f}(\mathbf{X} \setminus \mathbf{U}_k) = \{ \mathbf{y} \} \text{ where } \mathbf{x}, \ \mathbf{y} \in \mathbf{Z} \text{ and } \mathbf{x} \neq \mathbf{y}. \text{ Since } \beta cl(\mathbf{U}_k)$ $\cap U_{n=}\phi$ for all $n \neq k$, then $\beta cl(U_k) \cap U_{n\neq k} U_{n=}\phi$ and hence $\beta cl(U_k) \subset U_k$. Let

$$\phi \neq K \subset Z$$
. If x, y $\in K$ then $\mathbf{f}^{-1}(K) = X$ and $\beta cl(\mathbf{f}^{-1}(K)) = \beta cl(X) \subset X = \mathbf{f}^{-1}(K)$

 $= \mathbf{f}^{-1}(\beta cl(K))$. If $x \in K$ and $y \notin K$, then $\mathbf{f}^{-1}(K) = U_k$ and $\beta cl(\mathbf{f}^{-1}(K)) = \beta cl(U_k) \subset U_k$

 $= \mathbf{f}^{-1}(K) = \mathbf{f}^{-1}(\beta cl(K)). \text{ If } y \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ other hand, for all } n \in K \text{ other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ On the other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k . \text{ other hand, for all } n \in K \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x \notin K \text{ then } f^{-1}(K) = \mathbf{X} \setminus U_k \text{ and } x$ $\neq k$, $U_k \cap \beta \operatorname{cl}(U_n) = \phi$ and hence $U_k \cap U_{n \neq k} \beta \operatorname{cl}(U_n) = \phi$ This implies that

 $U_k \cap \beta cl(U_{n \neq k} \ U_n) = \varphi \text{ Thus, } \beta cl(X \setminus U_k) \subset X \setminus U_k \text{ . Since } \beta cl(K) = K \text{ for each } K \subset Z \text{ , we have } \beta cl(f) \in X \setminus U_k \text{ . Since } \beta cl(K) = K \text{ for each } K \subset Z \text{ , we have } \beta cl(f) \in X \setminus U_k \text{ . Since } \beta cl(K) = K \text{ for each } K \subset Z \text{ , we have } \beta cl(f) \in X \setminus U_k \text{ . Since } \beta cl(K) = K \text{ for each } K \subset Z \text{ , we have } \beta cl(f) \in X \setminus U_k \text{ . Since } \beta cl(K) = K \text{ for each } K \subset Z \text{ . Since } \beta cl(K) = K \text{ for each } K$ $^{-1}(K) = \beta cl(X \setminus U_k) \subset X \setminus U_k = f^{-1}(K) = f^{-1}(\beta cl(K))$. Hence we obtain that f is β - continuous. Since f is not constant, this is a contradiction with the Z- β connectedness of X. Hence, X is strongly β-connected.

References:

- Corson, H. and Michael, E., "Metrizability of certain countable unions", Illinois J. Math., 8 (1964), 351-360. [1]
- [2] EL-Deeb, N., Hasanein, I.A., Mashhour, A.S. and Noiri, T., "On p-regular spaces", Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27 (1983), 311-315.
- [3] Lynch, M., "Characterizing continuous functions in terms of separated sets", Int. J. Math. Edu. Sci. Technol., vol. 36 (5), (2005), 549-551
- [4] Habil E. D. and Elzenati K. A., "Connectedness in isotonic spaces" Turk.J.Math.TUBITAK 2005, 1-16.
- Harris, M.J., "Continuity and separation for pointwise symmetric isotonic closure Functions" arxiv:math.GN/0507230vI 12 [5] Jul2005
- [6] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., "On pre-continuous and weak precontinuous mapping", Proc.Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- Miguel Caldas, Erdal Ekici and Saeid Jafari., "On Generalized pre-closure spaces and separation for some special types of [7] functions", Italian Journal of Pure and Applied Mathematics.
- [8]
- Stadler B. M. R. and Stadler P. F., "Basic properties of closure Space". J.Chem.Inf.Comput.Sci.42 (2002), p:577-585 Stadler B. M. R. and Stadler P. F., "Higher separation axioms in generalized closure Spaces". Commert. Math.Pac.Mat, Ser 143 (2003), 257-[9] 273