
International Refereed Journal of Engineering and Science (IRJES)

ISSN (Online) 2319-183X, (Print) 2319-1821

Volume 2, Issue 11 (November 2013), PP. 10-18

www.irjes.com 10 | Page

Task Scheduling in Multiprocessor System using Genetic

Algorithm

Atul Kumar Rai
1
, Ravindra Gupta

2
, Gajendra Singh Chandel

3

1
M. Tech. (SE), SSSIST,SEHOR, MP India.

2
Dept. of Computer Science, SSSIST, SEHOR, MP India.

3
Dept. of Computer Science, SSSIST, SEHOR, MP India.

Abstract:- The general problem of multiprocessor scheduling can be stated as scheduling a set of partially

ordered computational tasks onto a multiprocessor system so that a set of performance criteria will be optimized.

In our work we considered only Static scheduling problems with the some characteristics like tasks are non

preemptive in nature, precedence relations among the tasks exist, Communication costs do not exist, and all the

processors are heterogeneous. Task scheduling in multiprocessor system is NP-complete problem. Various

heuristic methods have been proposed that obtain suboptimal solutions in polynomial time. However, a heuristic

algorithm may work very well for some inputs, but very poorly for others. We would like a scheduling

algorithm to be robust, giving good results regardless of the structure of the task it is to schedule. To develop a

scheduling algorithm which tries to find an optimal solution and is robust, we use genetic algorithms. A genetic

algorithm applies the principles of evolution found in nature to the problem for finding an optimal solution.

Genetic algorithm is based on three operators: Natural Selection, Crossover and Mutation. To compare the

performance of our algorithm, we have also implemented another scheduling algorithm HEFT (Heterogeneous

Earliest Finish Time) which is a heuristic algorithm. Our results are divided into three parts: in first part

comparison of HEFT and GA demonstrate that our proposed Genetic Algorithm is able to compete with

heuristic based algorithms as far as quality of solution is concerned. In second part we observe that irrespective

of problem size Average Schedule Length is continuously decreasing as the number of generations increases

which guarantee for a good solution. In third part, we observe the effect of mutation probability on quality of

solution and found best quality of solution for our set of problems at mutation probability 0.20.

Keywords:- HEFT, Genetic Algorithm, Genetic Operator, Mutation.

I. INTRODUCTION
 Task Scheduling in multiprocessor system has been a source of challenging problems for researchers in

the area of computer engineering. The general problem of multiprocessor scheduling can be stated as scheduling

a set of partially ordered computational tasks onto a multiprocessor system so that a set of performance criteria

will be optimized.

We take a deterministic scheduling problem [26] with the following characteristics:

2. Tasks are non preemptive in nature. Precedence relations among the tasks exist.

3. In our work we assume that Communication costs do not exist.

4. The multiprocessor system consists of a limited number of fully connected processors.

5. All the processors are heterogeneous processor.

1.1 Problem Statement Its Possible Solutions
A scheduling problem consists of a multiprocessor computing system, a parallel application and an

objective function for scheduling. The multiprocessor computing system consists of a set of m homogeneous

processors P= {P1, P2... Pm} which are fully connected with each other via identical links. The parallel

application can be represented by a directed acyclic graph (DAG), G= (V, E, W), where the vertices set V

consists of v non preemptive tasks and vi denotes the i
th

 task. The edge set E represents the precedence

relationships among tasks. A directed edge eij in E indicated that vj can not begin its execution before receiving

data from vi. In this case, vi is called an immediate predecessor of vj, while vj is called an immediate successor of

vi. W is a matrix of vxm , and wi, in W represents the estimated execution time of vi on j
th

 processor.

In a given DAG, a task without any predecessor is called an entry task and a task without any successor is called

an exit task. The main objective of the task scheduling [1] is to determine the assignment of tasks of a given

application to a given parallel system such that the execution time of this application is minimized satisfying all

precedence constraints.

Since this scheduling problem is known to be NP Complete [20], various heuristic approaches have

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 11 | Page

been developed to solve the problem each with varying degrees of success [4, 8, 14 and 18]. Such methods

include heuristic algorithms [8], critical path techniques [18] and acyclic and cyclic graph methods.

An alternative, more recent approach has involved the application of Genetic Algorithms (GA) to

multiprocessor task scheduling problems [1, 7].

1.3 Aim and Overview of This Thesis
We are trying to develop a genetic algorithm (GA) approach to the problem of task scheduling for

multiprocessor systems. Our approach requires minimal problem specific information. Key features of our

system include a flexible, adaptive problem representation and an effective fitness function.

 This Thesis is organized as follows. Chapter 2 presents the brief introduction of genetic algorithms and

strength of genetic algorithm. The system architecture and a method for generating initial population, discussion

on the fitness function, and construction of three genetic operators: Natural selection, crossover and mutation are

presented in chapter 3. Chapter 4 presents the experiments performed, results obtained and their analysis.

Chapter 5 gives the conclusion we can draw from this work and some ideas to extend this work in future.

II. GENETIC ALGORITHM
A genetic or evolutionary algorithm [23] applies the principles of evolution found in nature to the

problem for finding an optimal solution. In a "genetic algorithm", the problem is encoded in a series of bit

strings that are manipulated by the algorithm. In an "evolutionary algorithm", the decision variables and

problem functions are used directly. GAs are based on the adaptive processes of natural systems which are

essential for evolution, using direct analogies of natural behavior such as 'populations' of 'chromosomes',

'reproduction', 'cross-breeding' and 'mutation'. They have been shown to be robust stochastic searching

algorithms for a wide range of problems. The outline of a GA is described in Fig. 2.1

Fig. 2.1: Structure of Genetic Algorithm

2.1 Why GA?
GAs are computationally simple and easy to implement.

 Their power lies in the fact that as members of the population mate and produce offspring, offspring have a

significant chance of inheriting the best characteristics of both parents.

 They are able to exploit favorable characteristics of previous solution attempts to construct better solutions.

III. SYSTEM OVERVIEW
We can define our algorithm in following phase:

 Problem Description

 DAG Representation

 Initial Population (Structure of the Chromosome)

 Evaluation and Selection: Roulette Wheel Mechanism

 Reproduction: Crossover and Mutation

 Output of the algorithm (Simulation Results)

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 12 | Page

Fig 3.1: System Architecture

3.1 Problem Description

In this Phase, We have implemented a system to automatically generate the scheduling problems of varying

sizes.

3.2 DAG Representation

Directed acyclic graphs [6, 17] are directed graphs with no cycles. They are an important class of graphs, being

part tree, part graph, and having many applications, such as those involving precedence among "events”. A

graph can be represented in computer memory by the adjacency matrix.

3.3 Initial Population

Design of chromosome is crucial for devising GA as they code the solution. A good coding scheme will benefit

operators and make the object function easy to calculate. For this purpose, we define a chromosome as two

strings {SQ, SP}, who’s length equal to the number of tasks. SQ (scheduling queue) is used to ensure the

precedence constraints between tasks, and sqi in SQ represents the i
th

 task to be scheduled. Each element spi in

SP (scheduling processor) represents the processor the corresponding task is scheduled onto.

To solve the problem of task scheduling, we generate the initial population just according the precedence

constraints between tasks. As a result, any feasible solution may be generated and contained in the initial

population.

Fig 3.2: The Pseudo Code to Generate a Chromosome

3.4 Evaluation and Selection
In order to select good chromosomes, we define the fitness function as

1) minSL - (maxSL / 1) SL(i) - (maxSL) F(i
Where: maxSL and minSL is the maximum and

minimum finishing time of chromosomes in current generation, respectively. SL (i) is the finishing time of the

i
th

 chromosome.

Once fitness values have been evaluated for all chromosomes, we can select good chromosomes through

rotating roulette wheel. The chromosomes with higher fitness values have more chance to be selected. And we

always save the chromosome with the best fitness so far in current generation to the next generation.

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 13 | Page

3.5 Crossover

We employ two-cut-point crossover. Because each chromosome consists of two parts with different

characteristics, we exploit two crossover operators for these two parts of chromosomes and randomly crossover

the first part or the second part.

For the first part SQ, we rearrange the order of tasks in crossover part of one chromosome according to

another chromosome. And for the second part SP, we just exchange the crossover subpart of two chromosomes.

Details about crossover can be seen in Fig. 3.3.

Fig 3.3: The pseudo code of crossover operator

3.6 Mutation

Mutation can be considered as a random alternation of the individual. We employ two policies to mute the

chromosome as shown in Fig. 3.4.

Fig 3.4: The pseudo code of mutation operator

EXPERIMENTS AND RESULTS
In our work, we implemented two algorithms for solution of multiprocessor task scheduling problem.

One is based on list scheduling heuristic HEFT and other is our proposed Genetic Algorithm.

For performance evaluation of our algorithm we generated some problems of varying sizes and solved them by

both the algorithms. Details of our experimental setup and results obtained by HEFT and proposed GA are as

given below.

4.1 Experimental Setup

We have implemented a system to automatically generate the scheduling problems of required sizes.

This we have done to avoid biasing in giving values of different parameters required for the problems. Our

system fits random values to these parameters in appropriate ranges. We have generated problems for our

experiments with the following characteristics:

 Size of problem ranges from 25 to 65 with an interval of 5.

 There is no limit on the number of successors of each task except the exit task which does not have

any successor.

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 14 | Page

 The execution time for each task is a random number between 5 and 25.

 Number of processors varies from 4 to 8 according to the size of problems.

As we did not put any restriction over the number of successor a task may have, task graph may be much

complicated. So, the problems we have chosen may be considered difficult in comparison to the kind of

problems we normally see in literature, where a restriction on maximum number of successor tasks has been put.

 4.2 Results of HEFT

The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm is a heuristic scheduling algorithm for a

bounded number of heterogeneous processors, which has two major phases: a task prioritizing phase for

computing the priorities of all tasks and a processor selection phase for selecting the tasks in the order of their

priorities and scheduling each selected task on its “best” processor, which minimizes the task's finish time.

We run HEFT procedure on ten different problems with Problem Identification Numbers (PIN) 0 to 9

for each problem size to note the length of the schedules obtained (see Table 4.1). We then computed average

schedule length for each problem size for comparison with corresponding results obtained from GA.

Table 4.1: Results of HEFT

4.3 Results of GA

The proposed genetic algorithm discussed in previous chapter was implemented and evaluated on the

same set of problems we used to evaluate HEFT. We set following parameters for our Genetic Algorithm:

 Population Size=25

 Maximum Generations= 5000

 Crossover Probability= .6

 Mutation Probability=.2

Results obtained are shown in Table4.2.

Table 4.2: Results of GA

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 15 | Page

4.2 Comparison of HEFT and GA
Results obtained from our experiments are analyzed for following factors:

4.5.1 Quality of solution

Comparison of average schedule length of the GA and HEFT by using different number of processors

is given in Table 4.3 and in Fig. 4.4.

Results demonstrate that our proposed Genetic Algorithm is able to compete with heuristic based algorithms as

far as quality of solution is concerned. As heuristics are biased towards certain characteristics of solution so they

tend to search solution only in a small part of whole search space. It is also possible that they never explore a

particular region of search space. Thus for some problems heuristics may give bad results also if they are not

chosen carefully

On the other hand GA is a more powerful method as it searches simultaneously in many parts of search

space. Because of mutation operator, change in region being searched, gives potential to GA to search in any

part of the search space. Thus it is more likely to find a better or best solution.

Table 4.3: Comparison of HEFT and GA

HEFT vs GA

133.8

162.7

170

186.1

204.8

216.2

231.2

252.3

269.4

133.6

162.2

169.8

184.9

204.1

231.1

252.2

268.7

216.1

0 50 100 150 200 250 300

25

30

35

40

45

50

55

60

65

P
ro

b
le

m
 s

iz
e

Avg. Schedule Length
HEFT results GA results

Fig.4.4: HEFT vs. GA Results

No. of tasks
No. of

processors

Average schedule

length (HEFT)

Average schedule

length (GA)

25 4 133.8 133.6

30 4 162.7 162.2

35 5 170 169.8

40 5 186.1 184.9

45 6 204.8 204.1

50 6 216.2 216.1

55 7 231.2 231.1

60 7 252.3 252.2

65 8 269.4 268.7

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 16 | Page

4.5.2 Robustness and Guarantee for good solution

During our experiments on GA we noted Average schedule lengths of populations emerging

generations after generation (see Fig. 5.12).

Though we have shown results only for problem size 45 in Fig. 5.12 and corresponding data in Table

5.4-(a) to (j), for each problem irrespective of its size we observe that average schedule length is continuously

decreasing as more and more generations are evolving even if schedule length corresponding to best

chromosome increased in some cases. This shows that Genetic Algorithm is robust and ultimately it will give us

a good quality solution as quality of solution set is continuously improved. It also reveals that more generations

we evolve; it is likely to have better quality in solution.

Table 4.5: Average Schedule lengths for problem Size 65.

4.5.3 Effect of mutation probability on performance of Genetic algorithm

As mutation is the key to change the region of search space, mutation probability may have dominating

role in finding solutions of good quality. Thus, we repeated our experiments by fixing crossover probability and

changing mutation probabilities from 0.05 to .40 and noted average schedule lengths. These results for

problem size 65 and crossover probabilities from 0.20 to 0.70 are shown in Fig. 5.13 and corresponding data in

Table 5.5. Though results only for problem size 65 are shown here, we observed similar trend in problems of all

sizes.

Fig. 5.14 shows further average of results, mixing the effect of all crossover probabilities which clearly

shows that up till mutation probability is .20, increase in mutation probability leading to better results. After .20

results are fluctuating in a small range but normally are not better than that we obtained for .20. So, we have

found best mutation probability for our set of problems as .20.

Effect of mutation probability on Avg.schedule

length for crossover probability .2

265

270

275

280

285

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
v

g
.

s
c
h

e
d

u
le

 l
e
n

g
th

Avg. schedule length

Effect of mutation probability on Avg.schedule

length for crossover probability .3

265

270

275

280

285

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
v

g
.

s
c
h

e
d

u
le

 l
e
n

g
th

Avg. schedule length

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 17 | Page

Effect of mutation probability on Avg.schedule

length for crossover probability .4

265

270

275

280

285

290

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
v

g
.

sc
h

ed
u
le

 l
en

g
th

Avg. schedule length

Effect of mutation probability on Avg.schedule

length for crossover probability .5

266
268
270
272
274
276
278
280
282

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
v
g
.

sc
h
ed

u
le

 l
en

g
th

Avg. schedule length

Effect of mutation probability on Avg.schedule

length for crossover probability .6

260

265

270

275

280

285

290

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
vg

.
sc

he
du

le
 l

en
gt

h

Avg. schedule length

Effect of mutation probability on Avg.schedule

length for crossover probability .7

270

272

274

276

278

280

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Mutation probabilities (pm)

A
v

g.
 s

ch
ed

ul
e

le
n

gt
h

Avg. schedule length

Fig 5.13: Effect of Mutation Probability on Average Schedule Length for Problem Size 65.

Effect of mutation probability on Avg.schedule

length

265

270

275

280

285

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

mutation probabilities (pm)

A
v

g
. s

ch
ed

u
le

 l
en

g
th

Avg. schedule length

Fig. 5.14: Effect of Mutation Probability on Further Average of Average Schedule Length.

IV. CONCLUSION
A static process scheduling algorithm tries to schedule a set of tasks with known processing and

communication characteristics on processors to optimize a performance metric, such as latest completion time

for a set of jobs. To avoid solutions involving exhaustive search, researchers have applied heuristics to the

problems. However, a heuristic algorithm may work very well for some inputs, but very poorly for others. We

would like a scheduling algorithm to be robust, giving good results regardless of the structure of the task it is

to schedule. For finding such type of scheduling algorithm, we have developed Genetic Algorithm.

REFERENCES
[1]. A. Chipperfield and P. Flemming, “Parallel Genetic Algorithms”, Parallel and Distributed Computing

Handbook, first ed., A.Y. Zomaya, ed., pp. 1,118-1,143.New York: McGraw-Hill, 1996.

[2]. A.Y. Zomaya, C. Ward, and B.S. Macey, “Genetic Algorithms and Scheduling in Parallel Processing

Systems:

[3]. Issues and Insight,” Technical Report 97-PCRL-02,Parallel Computing Research Laboratory, Dept. of

Electrical and Electronic Eng., The Univ. of Western Australia, 1997.

[4]. Ahmad and Y. Kwok, “On Exploiting Task Duplication inParallel Program Scheduling,” IEEE Trans.

Parallel and Distributed Systems, vol. 9, no. 9, pp. 872-892, Sept. 1998.

[5]. Amphlett, R.W. and Bull, D.R., 'Multiprocessor Scheduling for High Quality Digital Audio', IEEE

Col.Multiprocessor DSP - Applications, Algorithms and Architectures, London, May 1995, pp. 211-

218.

Task Scheduling in Multiprocessor System using Genetic Algorithm

www.irjes.com 18 | Page

[6]. B. Kruatrachue and T.G. Lewis, “Duplication Scheduling Heuristic, a New Precedence Task Scheduler

for Parallel Systems,” Technical Report 87-60-3, Oregon State Univ., 1987.

[7]. B. Malloy, E. Lloyd, and M. Soffa. Scheduling DAG'S for asynchronous multiprocessor execution.

IEEE Transactions on Parallel and Distributed Systems, 5(5), May 1994.

[8]. Beasley, D., Bull, D.R. and Martin, R.R., 'An Overview of Genetic Algorithms', University Computing,

1993, Vol. 15, pp. 58-69, 170-181.

[9]. Coffman, E.J., 'Computer and Job-Shop Scheduling Theory', John Wiley & Sons, 1976. Lo, V.M.,

'Heuristic Algorithms for Task Assignment in Distributed Systems', IEEE Trans. Computers, Vol. 37,

No. 11, Nov. 1988, pp. 1384-97 .

[10]. G.Q. Liu, K.L. Poh, M. Xie, "Iterative list scheduling for heterogeneous computing", Journal of

Parallel and Distributed Computing, Vol.65, pp.654-664, 5, 2005.

[11]. Goldberg, D.E., 'Genetic Algorithms in Search, Optimization and Machine Learning', Addison- Wesley

Publishing, 1989.

[12]. H. El-Rewini, “Partitioning and Scheduling,” Parallel and Distributed Computing Handbook, A.Y.

Zomaya, ed., pp. 239-273. New York: McGraw-Hill, 1996.

[13]. H. El-Rewini, T.G. Lewis, and H.H. Ali, Task Scheduling in Parallel and Distributed Systems. Prentice

Hall, 1994.

[14]. H. Topcuoglu, M.Y. Wu, "Performance-effective and low-complexity task scheduling for

heterogeneous computing", IEEE Transactions on Parallel and DistributedSystems, Vol. 13, pp.260-

274, 3, 2002.

[15]. Ha, S. and Lee, E.A., 'Quasi-Static Scheduling for Multiprocessor DSP', 1991 IEEE Int. Symposium on

Circuits and Systems, Vol. 1, Singapore, June 1991, pp. 352-5.

[16]. Holland, J.H., 'Adaptation in Natural and Artificial Systems', MIT Press, 1975.

[17]. Hou, E.S.H., Hong, R. and Ansari, N.'Efficient Multiprocessor Scheduling Based on Genetic

Algorithms', IECON '90, IEEE Industrial Electronics Soc., Pacific Gro. FL., USA, Vol. 2, NOV. 1990,

pp. 1239-43.

[18]. Jonathan L. Gross, Jay Yellen, Handbook of Graph Theory, CRC Press.

[19]. Kohler, W.H., 'A Preliminary Evaluation of the Critical Path Method for Scheduling Tasks on

Multiprocessor Systems', IEEE Trans. Computers, Vol. C-24, Dec. 1975,pp. 1235-8.

[20]. M. Srinivas and L.M. Patnaik, “GeneticAlgorithms: A Survey”, Computer, vol. 27, pp. 17-26, 1994.

[21]. Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs: Second Edition, Elsevier,

2004

[22]. P.-C. Wang and W. Korfhage. Process scheduling using genetic algorithms. In IEEE Symp. on Parallel

and Dist. Proc., pages 638-641, Texas, USA, Oct. 1995.

[23]. R. Horst and P.M. Pardalos, Handbook of Global Optimization. The Netherlands: Kluwer Academic

Publishers, 1995.

[24]. R.C. Correa, A. Ferreira, P. Rebreyend, "Scheduling multiprocessor tasks with genetic algorithms",

IEEE Transactions Parallel and Distributed Systems, Vol.10, pp. 825, 1999.

[25]. S. Darbha, D.P. Agrawal, "Optimal scheduling algorithm for distributed-memory machines", IEEE

Transactions on Parallel and Distributed Systems, Vol.9, pp. 87-95, 1, 1998

[26]. T. Tsuchiya, T. Osada, and T. Kikuno, “Genetic-Based Multiprocessor Scheduling Using Task

Duplication,” Microprocessors and Microsystems, vol. 22, pp. 197-207,1998.

[27]. Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to

Multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406-471, 1999.

