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Abstract:- The general problem of multiprocessor scheduling can be stated as scheduling a set of partially 

ordered computational tasks onto a multiprocessor system so that a set of performance criteria will be optimized. 

In our work we considered only Static scheduling problems with the some characteristics like tasks are non 

preemptive in nature, precedence relations among the tasks exist, Communication costs do not exist, and all the 

processors are heterogeneous. Task scheduling in multiprocessor system is NP-complete problem. Various 

heuristic methods have been proposed that obtain suboptimal solutions in polynomial time. However, a heuristic 

algorithm may work very well for some inputs, but very poorly for others. We would like a scheduling 

algorithm to be robust, giving good results regardless of the structure of the task it is to schedule. To develop a 

scheduling algorithm which tries to find an optimal solution and is robust, we use genetic algorithms. A genetic 

algorithm applies the principles of evolution found in nature to the problem for finding an optimal solution. 

Genetic algorithm is based on three operators: Natural Selection, Crossover and Mutation. To compare the 

performance of our algorithm, we have also implemented another scheduling algorithm HEFT (Heterogeneous 

Earliest Finish Time) which is a heuristic algorithm. Our results are divided into three parts: in first part 

comparison of HEFT and GA demonstrate that our proposed Genetic Algorithm is able to compete with 

heuristic based algorithms as far as quality of solution is concerned. In second part we observe that irrespective 

of problem size Average Schedule Length is continuously decreasing as the number of generations increases 

which guarantee for a good solution. In third part, we observe the effect of mutation probability on quality of 

solution and found best quality of solution for our set of problems at mutation probability 0.20. 
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I. INTRODUCTION 
  Task Scheduling in multiprocessor system has been a source of challenging problems for researchers in 

the area of computer engineering. The general problem of multiprocessor scheduling can be stated as scheduling 

a set of partially ordered computational tasks onto a multiprocessor system so that a set of performance criteria 

will be optimized.  

We take a deterministic scheduling problem [26] with the following characteristics: 

2. Tasks are non preemptive in nature. Precedence         relations among the tasks exist. 

3. In our work we assume that Communication costs do not exist. 

4. The multiprocessor system consists of a limited number of fully connected processors. 

5. All the processors are heterogeneous processor. 

 

1.1 Problem Statement Its Possible Solutions 
A scheduling problem consists of a multiprocessor computing system, a parallel application and an 

objective function for scheduling. The multiprocessor computing system consists of a set of m homogeneous 

processors P= {P1, P2... Pm} which are fully connected with each other via identical links. The parallel 

application can be represented by a directed acyclic graph (DAG),  G= (V, E, W), where the vertices set V 

consists of v non preemptive tasks and vi denotes the i
th

 task. The edge set E represents the precedence 

relationships among tasks. A directed edge eij in E indicated that vj can not begin its execution before receiving 

data from vi. In this case, vi is called an immediate predecessor of vj, while vj is called an immediate successor of 

vi. W is a matrix of vxm , and wi, in W represents the estimated execution time of vi   on j
th

 processor.  

In a given DAG, a task without any predecessor is called an entry task and a task without any successor is called 

an exit task. The main objective of the task scheduling [1] is to determine the assignment of tasks of a given 

application to a given parallel system such that the execution time of this application is minimized satisfying all 

precedence constraints. 

Since this scheduling problem is known to be NP Complete [20], various heuristic approaches have 
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been developed to solve the problem each with varying degrees of success [4, 8, 14 and 18]. Such methods 

include heuristic algorithms [8], critical path techniques [18] and acyclic and cyclic graph methods.  

An alternative, more recent approach has involved the application of Genetic Algorithms (GA) to 

multiprocessor task scheduling problems [1, 7]. 

 

1.3 Aim and Overview of This Thesis 
We are trying to develop a genetic algorithm (GA) approach to the problem of task scheduling for 

multiprocessor systems. Our approach requires minimal problem specific information. Key features of our 

system include a flexible, adaptive problem representation and an effective fitness function. 

  This Thesis is organized as follows. Chapter 2 presents the brief introduction of genetic algorithms and 

strength of genetic algorithm. The system architecture and a method for generating initial population, discussion 

on the fitness function, and construction of three genetic operators: Natural selection, crossover and mutation are 

presented in chapter 3. Chapter 4 presents the experiments performed, results obtained and their analysis. 

Chapter 5 gives the conclusion we can draw from this work and some ideas to extend this work in future. 

 

II. GENETIC ALGORITHM 
A genetic or evolutionary algorithm [23] applies the principles of evolution found in nature to the 

problem for finding an optimal solution. In a "genetic algorithm", the problem is encoded in a series of bit 

strings that are manipulated by the algorithm. In an "evolutionary algorithm", the decision variables and 

problem functions are used directly. GAs are based on the adaptive processes of natural systems which are 

essential for evolution, using direct analogies of natural behavior such as 'populations' of 'chromosomes', 

'reproduction', 'cross-breeding' and 'mutation'. They have been shown to be robust stochastic searching 

algorithms for a wide range of problems. The outline of a GA is described in Fig. 2.1 

 

 
Fig. 2.1: Structure of Genetic Algorithm 

 

2.1 Why GA? 
GAs are computationally simple and easy to implement. 

 Their power lies in the fact that as members of the population mate and produce offspring, offspring have a 

significant chance of inheriting the best characteristics of both parents. 

 They are able to exploit favorable characteristics of previous solution attempts to construct better solutions.  

 

III. SYSTEM OVERVIEW 
We can define our algorithm in following phase: 

 Problem Description 

 DAG Representation 

 Initial Population (Structure of the Chromosome) 

 Evaluation and Selection: Roulette Wheel Mechanism 

 Reproduction: Crossover and Mutation 

 Output of the algorithm (Simulation Results) 
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Fig 3.1: System Architecture 

 

3.1 Problem Description 

In this Phase, We have implemented a system to automatically generate the scheduling problems of varying 

sizes. 

 

3.2 DAG Representation 

Directed acyclic graphs [6, 17] are directed graphs with no cycles. They are an important class of graphs, being 

part tree, part graph, and having many applications, such as those involving precedence among "events”. A 

graph can be represented in computer memory by the adjacency matrix. 

 

3.3 Initial Population 

Design of chromosome is crucial for devising GA as they code the solution. A good coding scheme will benefit 

operators and make the object function easy to calculate. For this purpose, we define a chromosome as two 

strings {SQ, SP}, who’s length equal to the number of tasks. SQ (scheduling queue) is used to ensure the 

precedence constraints between tasks, and sqi in SQ represents the i
th

 task to be scheduled. Each element spi in 

SP (scheduling processor) represents the processor the corresponding task is scheduled onto. 

To solve the problem of task scheduling, we generate the initial population just according the precedence 

constraints between tasks. As a result, any feasible solution may be generated and contained in the initial 

population. 

     

 
Fig 3.2: The Pseudo Code to Generate a Chromosome 

 

3.4 Evaluation and Selection 
In order to select good chromosomes, we define the fitness function as 

1)  minSL - (maxSL / 1) SL(i) - (maxSL   ) F(i 
Where: maxSL and minSL is the maximum and 

minimum finishing time of chromosomes in current generation, respectively. SL (i) is the finishing time of the 

i
th

 chromosome. 

Once fitness values have been evaluated for all chromosomes, we can select good chromosomes through 

rotating roulette wheel. The chromosomes with higher fitness values have more chance to be selected. And we 

always save the chromosome with the best fitness so far in current generation to the next generation. 
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3.5 Crossover  

We employ two-cut-point crossover. Because each chromosome consists of two parts with different 

characteristics, we exploit two crossover operators for these two parts of chromosomes and randomly crossover 

the first part or the second part.  

For the first part SQ, we rearrange the order of tasks in crossover part of one chromosome according to 

another chromosome. And for the second part SP, we just exchange the crossover subpart of two chromosomes.  

Details about crossover can be seen in Fig. 3.3. 

 

 
Fig 3.3: The pseudo code of crossover operator 

 

3.6 Mutation 

Mutation can be considered as a random alternation of the individual. We employ two policies to mute the 

chromosome as shown in Fig. 3.4. 

 

 
Fig 3.4: The pseudo code of mutation operator 

 

EXPERIMENTS AND RESULTS 
In our work, we implemented two algorithms for solution of multiprocessor task scheduling problem. 

One is based on list scheduling heuristic HEFT and other is our proposed Genetic Algorithm.  

For performance evaluation of our algorithm we generated some problems of varying sizes and solved them by 

both the algorithms. Details of our experimental setup and results obtained by HEFT and proposed GA are as 

given below. 

 

4.1 Experimental Setup 

We have implemented a system to automatically generate the scheduling problems of required sizes. 

This we have done to avoid biasing in giving values of different parameters required for the problems. Our 

system fits random values to these parameters in appropriate ranges. We have generated problems for our 

experiments with the following characteristics: 

 Size of problem ranges from 25 to 65 with an interval of 5.  

 There is no limit on the number of successors of each task except the exit task which does not have 

any successor.  
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 The execution time for each task is a random number between 5 and 25.  

 Number of processors varies from 4 to 8 according to the size of problems. 

As we did not put any restriction over the number of successor a task may have, task graph may be much 

complicated. So, the problems we have chosen may be considered difficult in comparison to the kind of 

problems we normally see in literature, where a restriction on maximum number of successor tasks has been put.  

 

            4.2 Results of HEFT 

The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm is a heuristic scheduling algorithm for a 

bounded number of heterogeneous processors, which has two major phases: a task prioritizing phase for 

computing the priorities of all tasks and a processor selection phase for selecting the tasks in the order of their 

priorities and scheduling each selected task on its “best” processor, which minimizes the task's finish time. 

We run HEFT procedure on ten different problems with Problem Identification Numbers (PIN) 0 to 9 

for each problem size to note the length of the schedules obtained (see Table 4.1). We then computed average 

schedule length for each problem size for comparison with corresponding results obtained from GA. 

 

 
Table 4.1: Results of HEFT 

 

4.3 Results of GA 

The proposed genetic algorithm discussed in previous chapter was implemented and evaluated on the 

same set of problems we used to evaluate HEFT.  We set following parameters for our Genetic Algorithm: 

 Population Size=25 

 Maximum Generations= 5000 

 Crossover Probability= .6  

 Mutation Probability=.2 

Results obtained are shown in Table4.2. 
 

 
Table 4.2: Results of GA 
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4.2 Comparison of HEFT and GA 
Results obtained from our experiments are analyzed for following factors: 

 

4.5.1 Quality of solution 

Comparison of average schedule length of the GA and HEFT by using different number of processors 

is given in Table 4.3 and in Fig. 4.4. 

Results demonstrate that our proposed Genetic Algorithm is able to compete with heuristic based algorithms as 

far as quality of solution is concerned. As heuristics are biased towards certain characteristics of solution so they 

tend to search solution only in a small part of whole search space. It is also possible that they never explore a 

particular region of search space. Thus for some problems heuristics may give bad results also if they are not 

chosen carefully 

On the other hand GA is a more powerful method as it searches simultaneously in many parts of search 

space. Because of mutation operator, change in region being searched, gives potential to GA to search in any 

part of the search space. Thus it is more likely to find a better or best solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Comparison of HEFT and GA 
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Fig.4.4: HEFT vs. GA Results 

 

No. of tasks 
No. of 

processors 

Average schedule 

length (HEFT) 

Average schedule 

length (GA) 

25 4 133.8 133.6 

30 4 162.7 162.2 

35 5 170 169.8 

40 5 186.1 184.9 

45 6 204.8 204.1 

50 6 216.2 216.1 

55 7 231.2 231.1 

60 7 252.3 252.2 

65 8 269.4 268.7 
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4.5.2 Robustness and Guarantee for good solution  

During our experiments on GA we noted Average schedule lengths of populations emerging 

generations after generation (see Fig. 5.12).  

Though we have shown results only for problem size 45 in Fig. 5.12 and corresponding data in Table 

5.4-(a) to (j), for each problem irrespective of its size we observe that average schedule length is continuously 

decreasing as more and more generations are evolving even if schedule length corresponding to best 

chromosome increased in some cases.  This shows that Genetic Algorithm is robust and ultimately it will give us 

a good quality solution as quality of solution set is continuously improved. It also reveals that more generations 

we evolve; it is likely to have better quality in solution. 

 

Table 4.5: Average Schedule lengths for problem Size 65. 

 

4.5.3 Effect of mutation probability on performance of Genetic algorithm 

As mutation is the key to change the region of search space, mutation probability may have dominating 

role in finding solutions of good quality. Thus, we repeated our experiments by fixing crossover probability and 

changing mutation probabilities from 0.05 to .40 and noted         average schedule lengths. These results for 

problem size 65 and crossover probabilities from 0.20 to 0.70 are shown in Fig. 5.13 and corresponding data in 

Table 5.5. Though results only for problem size 65 are shown here, we observed similar trend in problems of all 

sizes.  

Fig. 5.14 shows further average of results, mixing the effect of all crossover probabilities which clearly 

shows that up till mutation probability is .20, increase in mutation probability leading to better results. After .20 

results are fluctuating in a small range but normally are not better than that we obtained for .20. So, we have 

found best mutation probability for our set of problems as .20.    
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Effect of mutation probability on Avg.schedule 
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Effect of mutation probability on Avg.schedule 
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Fig 5.13: Effect of Mutation Probability on Average Schedule Length for Problem Size 65. 
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Fig. 5.14: Effect of Mutation Probability on Further Average of Average Schedule Length. 

 

IV. CONCLUSION 
A static process scheduling algorithm tries to schedule a set of tasks with known processing and 

communication characteristics on processors to optimize a performance metric, such as latest completion time 

for a set of jobs. To avoid solutions involving exhaustive search, researchers have applied heuristics to the 

problems. However, a heuristic algorithm may work very well for some inputs, but very poorly for others. We 

would like a scheduling algorithm to be robust, giving good results regardless of the structure of the task it is 

to schedule. For finding such type of scheduling algorithm, we have developed Genetic Algorithm. 
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