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Abstract: With the widespread adoption of container drop-and-hook transportation in port hinterland logistics, 

enhancing customer satisfaction while maintaining transport efficiency has become a critical issue. This paper 

addresses the tractor-trailer scheduling problem under a multi-enterprise alliance framework, and develops a 

multi-objective scheduling optimization model aiming to maximize both the total alliance profit and customer 

satisfaction. The model comprehensively considers practical factors such as vehicle operating costs, fixed costs, 

time window penalty costs, trailer storage fees, and carbon emission costs. To solve the model, an improved multi-

objective genetic algorithm is proposed, integrated with simulated annealing and variable neighborhood 

perturbation mechanisms to enhance the search capability. Numerical experiments are conducted to verify the 

effectiveness of the algorithm and to compare the performance of two different scheduling strategies. Results 

demonstrate that the proposed method can effectively balance service quality and economic benefits, providing 

both theoretical support and practical guidance for alliance-based transport scheduling. 

Keywords: Drop-and-hook transportation; customer satisfaction; vehicle scheduling; multi-objective genetic 

algorithm 
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I. INTRODUCTION 

In the increasingly frequent container transportation activities between ports and inland hinterlands, 

efficient scheduling and organization have become key to ensuring the smooth operation of the logistics system. 

Traditional transport methods often face challenges such as low loading and unloading efficiency, slow scheduling 

response, and poor resource utilization when confronted with intensive tasks, complex routes, and strict time 

requirements. As a transport organization mode that separates trailers from tractors, drop-and-hook transportation 

offers advantages such as rapid loading, flexible operations, and low empty driving rates. It is particularly suitable 

for large-scale container dispatch scenarios between ports and inland yards. This mode demonstrates significant 

potential in improving overall loading efficiency, alleviating port congestion, and optimizing resource allocation, 

making it a vital development direction for enhancing container transport efficiency. A scientifically designed 

vehicle scheduling scheme can not only significantly reduce tractor idle time and waiting time, but also effectively 

lower logistics costs and improve overall transport efficiency. 

In recent years, scholars at home and abroad have conducted extensive research on the optimization of 

tractor scheduling, primarily from three perspectives: optimization objectives, constraint considerations, and 

algorithm design. Regarding optimization objectives, researchers have focused on balancing transportation 

efficiency, costs, profitability, risks, and customer satisfaction. Wang et al.[1] constructed a tri-objective 

optimization model, systematically demonstrating how to achieve alliance stability and equitable profit 

distribution. Wang et al.[2] and Zhang et al.[3] developed dual-objective models based on customer satisfaction and 

transportation costs, respectively, employing genetic algorithms to balance customer demands with scheduling 

efficiency. Liang et al.[4] further proposed an improved ε-constraint method tailored to perishable goods 

distribution, validating the concurrent management of cost and satisfaction. Wu et al.[5] extended research into risk 

management by developing a replenishment model for multi-compartment tractors and trailers, balancing delivery 

costs and societal risks. In terms of constraints, studies have progressively moved toward greater complexity and 

specificity. Wang et al.[6] expanded their perspective to human factors engineering by incorporating driver work-

rest constraints to enhance scheduling flexibility. Bjelić et al.[7] focused on multi-size trailer constraints, improving 

container loading efficiency through intelligent trailer-size matching. Regarding algorithm design, intelligent 

algorithms have increasingly become mainstream. Feng et al.[8] developed a two-stage truck-freight matching 

model, applying a genetic algorithm to achieve efficient resource matching. Campuzano et al.[9] proposed 

metaheuristic algorithms suitable for large-scale instances to handle tractor multi-stop transportation routing 
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problems. Wen et al.[10] developed an adaptive large neighborhood search (ALNS) algorithm to effectively manage 

carbon emissions in multi-stop green tractor routing. Wang et al.[11] further integrated clustering analysis with 

adaptive genetic algorithms to tackle multi-stop pickup-and-delivery problems under dynamic demand, enhancing 

operational efficiency. Huber et al.[12] meticulously analyzed the impact of neighborhood operator design on 

solution performance for the Swap-Body problem. Du et al.[13] improved the simulated annealing algorithm by 

incorporating traffic congestion data, achieving reduced loss costs and enhanced customer satisfaction in cold-

chain logistics. 

As an effective means to improve logistics efficiency and reduce operational costs, container drop-and-

hook transportation has attracted widespread attention in recent years. However, under a multi-enterprise alliance 

model, how to reasonably schedule tractors to achieve the coordinated optimization of overall alliance profit and 

customer satisfaction remains a complex and pressing challenge. Existing studies mainly focus on single-objective 

optimization, often overlooking the balance between customer satisfaction and economic returns, making it 

difficult to meet the increasingly diverse demands of real-world transportation. To address this issue, this paper 

develops an optimization model for tractor scheduling that aims to maximize both alliance-wide profit and 

customer satisfaction. Furthermore, an efficient multi-objective optimization algorithm is designed to provide 

decision-making support for the operational management of drop-and-hook transport alliances. 

 

II. PROBLEM DESCRIPTION 

 

2.1 General description 

In the container transportation network connecting port yards and inland hinterlands, there are multiple 

transport enterprises and customer locations. These enterprises form an alliance to collaboratively manage drop-

and-hook transport vehicle scheduling. The objective is to complete all transportation tasks within the specified 

time by efficiently dispatching tractors and trailers, while minimizing transportation costs and maximizing overall 

profit and customer satisfaction. The transport demands are categorized into two types: loaded container transport 

and empty container transport. Within the constructed alliance transport network, multiple depots and 

transportation tasks exist, and any task can be handled by any drop-and-hook transport vehicle within the alliance. 

After completing a task, a vehicle may return to any depot within the alliance. 

To facilitate the research, the following assumptions are made: 

(1) All tractors and trailers have the same specifications, and trailers can be attached interchangeably 

among vehicles. Each tractor can only tow one trailer at a time. 

(2) Information about transportation tasks and vehicle routes is predetermined. Tractors maintain 

constant speed during transportation, and factors such as traffic congestion and vehicle breakdowns are not 

considered. 

(3) The time for attaching/detaching trailers and loading or unloading containers is negligible, and all 

transportation task details are known in advance. 

(4) Tractors and trailers within the alliance are shared resources. Vehicles from different yards can be 

deployed across enterprises without corporate restrictions. 

(5) The alliance platform assigns transportation tasks based on the shortest-path principle, allocating 

tasks to the nearest available tractor. Upon task completion, tractors return to the nearest yard within the alliance. 

(6) Each enterprise within the alliance must earn at least as much revenue as it would operating 

independently, ensuring fairness in revenue distribution. 

(7) Trailer storage fees at customer points are known in advance. Fees must be paid for trailers stored at 

customer locations, and the number of stored trailers cannot exceed the requirements at each customer point. 

(8) The number of tractors available at each yard is limited. 

 

2.2 Definition of Parameters 

To facilitate modeling and analysis, the definitions of all sets, parameters, and decision variables are 

listed in Table 1. 

 

Table 1 Parameter Description 
Parameter Definition 

E The empty container depot 

U The loaded container depot 

S The sets of vehicle yards 
N The customer points 

R The transportation tasks 

O The tractor transportation statuses 
Ms The set of tractors at yard s 

Qs The total number of tractors at yard s 

𝑑𝑖𝑗
𝑠  The distance from node i to node j for tractors at yard s 
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𝑇𝑖𝑗
𝑠  The travel time from node i to node j for tractors at yard s 

Tk The maximum working duration of tractor k 

𝑇𝑟
𝑘 The start time of the drop-and-pull operation for task r 

𝑇𝑗
𝑡 The trailer storage duration at customer point j 

tr The start time for transportation task r 

[ai, bi] The service time window for transportation task r 
ei The earliest and latest acceptable service times at customer point i 

li The earliest and latest acceptable service times at customer point i 

tij The travel time between customer points i and j 
Kj The maximum empty trailer storage capacity at customer point j 

Qo The load capacity under transportation status o 

co The fuel consumption per unit distance under transportation status o 
P The fuel price 

Hj The trailer storage cost per unit time at customer point j 

Fk The daily fixed cost for tractor k at yard s 
yj The number of empty trailers stored at customer point j 

ro The unit revenue obtained by a tractor performing a transportation task under status o 

R The total alliance revenue 
Ri The revenue of enterprise i 

Rtask The revenue of a single transportation task 

𝛼 The carbon emission factor, 

𝜆 The carbon tax rate 

𝑥𝑖𝑗
𝑘,𝑠

 Whether tractor k from yard s travels from node i to node j 

wr Whether transportation task r is delayed 
vj Whether trailer storage at customer point j is permitted 

xijo Whether the tractor operates under transportation status o 

 

III. MODEL FORMULATION 

In the container drop-and-hook transportation network spanning port yards and nearby inland hinterlands, 

there exist supply and demand relationships for goods between customer points, as well as empty container 

demands between empty container yards and customer locations. When a tractor departs from a depot and the 

destination requires a trailer that is not currently available at the originating depot, the tractor must first travel to 

a customer site or another depot where trailers are stored for dispatching. If the transportation task requires an 

empty container, the tractor must first go to the empty container yard to retrieve one, deliver it to the customer 

point for loading, and then proceed with subsequent transport tasks.Within the alliance, revenue sources include: 

income generated when a tractor tows a loaded container with a trailer to complete a delivery task; income from 

returning empty containers to the empty container yard; and income from dispatching empty containers and trailers. 

The associated costs include: the fixed cost of tractors, travel costs under different driving states, penalty costs for 

exceeding customer service time windows, trailer storage fees at customer points, and carbon emission costs 

incurred during travel. 

In actual transport operations, if a vehicle arrives too early, it must wait at the task location; if it arrives 

too late, it may delay the transport of other goods, resulting in losses. Therefore, this paper uses customer 

satisfaction to characterize the transportation company’s requirements regarding vehicle arrival times. The 

customer satisfaction for vehicle arrival time is calculated as follows: 
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The average customer satisfaction is represented by the mean satisfaction across all customer points: 
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Consequently, the mathematical model for the tractor scheduling optimization problem in container drop-

and-pull transportation is formulated with the objective of maximizing alliance profitability and customer 

satisfaction, expressed as follows: 

Objective Functions: 
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Where constraint (4) ensures maximization of the total alliance revenue; (5) maximizes average customer 

satisfaction; constraint (6) limits the number of tractors departing from all yards to the total number available 

within the alliance; constraint (8) ensures each transportation task is completed by exactly one tractor, preventing 

duplication; constraint (7) restricts the daily working hours of each tractor; constraint (8) ensures sequential task 

scheduling for tractors; constraint (9) mandates tractors to return to the nearest yard after task completion 

according to the shortest path principle; constraint (10) specifies that tasks cannot start earlier than their earliest 

acceptable time; constraint (11) states that the sum of revenues of individual enterprises equals the total alliance 

revenue; constraint (12) guarantees that each participating enterprise obtains revenue at least equal to that of 

independent operation; constraint (13) excludes transportation routes directly between yards; and constraint (14) 

ensures that the number of trailers stored at each customer point does not exceed its capacity. 

 

IV. ALGORITHM DESIGN 

Due to the high-dimensional solution space, uncertain time window constraints, and complex vehicle 

routing involved in the drop-and-hook transportation scheduling problem under a multi-depot alliance, traditional 

exact algorithms often suffer from limitations in computational efficiency and convergence speed. Therefore, 

heuristic algorithms are required for solving such problems. A multi-objective genetic algorithm is selected as the 

solution tool for its strong global search capability, making it well-suited for handling complex optimization 

problems. To further enhance the search efficiency and solution quality, simulated annealing and variable 

neighborhood search mechanisms are integrated into the algorithm. The algorithm design process is as follows: 

(1) Chromosome Encoding 

To effectively represent the task scheduling routes of drop-and-hook transport vehicles under a multi-

depot alliance, this study adopts a real-number encoding method based on a natural number sequence and designs 

a task-driven chromosome structure. This encoding approach accounts for route segmentation, task uniqueness, 

and scheduling feasibility constraints. It is compatible with crossover and mutation operations in the genetic 

algorithm and facilitates solution reconstruction and local optimization during the simulated annealing and 

neighborhood search phases. In the encoding scheme, the digit 0 represents the empty container yard, 1 denotes 

the loaded container yard, 2 to 6 represent the five depots, and digits from 7 onward correspond to customer points. 

Each chromosome encodes a complete scheduling solution as a one-dimensional array

1 1 2 2[ , , ,..., ,..., , ]k kG s n n s n s , where customer points are denoted by elements 𝑛𝑖, and depot identifiers, denoted 

as js H , act as both the starting and ending markers of vehicle routes, enabling the division of task 

subsequences among different vehicles. 

Decoding Rules: 
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Step 1: Initialize VPaths. Create an empty list VPaths to store the decoded paths. Each path represents 

the task execution sequence of a single tractor. 

Step 2: Initialize an index variable i to begin traversing the chromosome sequence from the start. 

Step 3: while i < len(G). Begin iterating through the chromosome sequence G. As long as the index i has 

not reached the end, continue processing. Initialize a temporary list path to record the current tractor’s task points. 

Step 4: while G[i] not in H. This inner loop continues to read customer points until a depot identifier is 

encountered. 

Step 5: path.append(G[i]). Add the current task identifier to the path. 

Step 6: i += 1. Move the index forward to process the next gene. 

Step 7: VPaths.append(path). Add the complete tractor path to the final result list VPaths. 

Step 8: i += 1. Move the index forward again to prepare for reading the next path segment. 

This process is repeated until the desired population size is reached, thereby generating the initial 

population. 

(2) Fitness Function 

Due to the differences in scale and units between alliance profit and customer satisfaction, normalization 

is required to unify their measurement. This study applies min-max normalization and transforms both objectives 

into a "the smaller, the better" format. 

Alliance profit is normalized and converted to a negative value: 

max

max min
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Z
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Customer satisfaction is also normalized and converted to a negative value: 
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max min
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To ensure solution feasibility, the model incorporates the following penalty terms: the time window 

violation penalty is denoted as time

iP , the tractor overtime penalty is denoted as work

iP , and the enterprise fairness 

constraint penalty is denoted as fair

iP . These penalties are integrated into a combined penalty term, formulated as: 

1 2 3

time work fair

i i iPi P P P                               (17) 

where 𝜆𝑘 is weight coefficients that adjust the influence of each type of constraint. 

The final fitness function is defined as: 

' (1 ) 'i iF Z f P                                   (18) 

where Fi is the fitness value of individual i, α∈[0,1] is the preference coefficient balancing alliance profit 

and customer satisfaction, and 𝜆 is the penalty adjustment coefficient. A smaller Fi indicates a better solution. 

This fitness function is used both for non-dominated sorting and selection in the genetic algorithm and for 

acceptance criteria in the simulated annealing process. 

(3) Selection Operator 

This study adopts the binary tournament selection method. In each selection round, two individuals are 

randomly chosen from the population. By comparing their non-dominated ranks and crowding distances, the better 

individual is selected. This process is repeated until the number of selected individuals reaches the predefined size 

of the offspring population. 

(4) Crossover Operator 

Considering sequence constraints, time windows, and uniqueness of transportation tasks, the partially 

mapped crossover operator is used. Two parent chromosomes (A and B) are randomly selected. Two crossover 

points are identified, and the gene segments within these points are exchanged between the parents, generating 

offspring A and B. A mapping relationship between the exchanged gene segments is established to resolve 

conflicts. Duplicated genes outside the crossover segments in offspring chromosomes are replaced based on this 

mapping, ensuring the resulting offspring contain no duplicates. The variation process is illustrated in Fig. 1. 

 
Fig. 1. Selection of crossover points and exchange of gene segments 

 

(4) Mutation Operator 

To enhance local search capability and population diversity, three variable neighborhood search 

perturbation strategies are introduced. One or a combination of these perturbations is randomly selected during 

mutation: 
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①1-0 Insertion Perturbation 

A task is removed from one tractor's route and inserted into another tractor’s route to facilitate task 

reallocation within the alliance. A task r is randomly removed from tractor A’s route, and feasible insertion 

positions in tractor B’s route are explored. If insertion improves fitness and satisfies time-window constraints, the 

perturbation is accepted; otherwise, it is reverted or another task-vehicle pair is explored. The perturbation process 

is illustrated in Fig. 2. 

 

 

 
Fig. 2. Chromosomal gene insertion diagram 

 

② 1-1 Task Exchange Perturbation 

A one-to-one task exchange is performed between two tractors to balance workloads and improve timing. 

Tasks T1 and T2 are randomly selected from tractor routes A and B, respectively. Tasks are swapped if feasibility 

constraints are met and fitness improves; otherwise, the exchange is rejected. The perturbation process is 

illustrated in Fig. 3. 

 
Fig. 3. Schematic diagram of chromosomal gene exchange 

 

③ Route Subsequence Reversal Perturbation 

A continuous subsequence of tasks within a tractor's route is selected and reversed to optimize time-

window matching or profitability. A subsequence in tractor A’s route is reversed, and feasibility regarding task 

order and timing is assessed. The perturbation is accepted if it leads to improved fitness. The perturbation process 

is illustrated in Fig. 4. 

 
Fig. 4. Schematic diagram of chromosomal gene inversion. 

 

(5) Simulated Annealing Operation 

A simulated annealing step is incorporated using the Metropolis acceptance criterion. Given the current 

temperature Tr, a new solution xj is randomly chosen from the neighborhood N(xi) of the current solution xi. The 

fitness difference ( ) ( )i jf f x f x    is computed. If 0f  , set i jx x ; if 0f  , compute exp( )
r

f
P

T


   and 

the new solution is accepted immediately; The formula is as follows: 
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                           (19) 

The cooling operation is performed according to the temperature decay rate ω set by the simulated 

annealing algorithm. The updated temperature Tr+1 is calculated using the cooling function g(Tr) as Tr+1 = g(Tr), 

with r = r + 1, where r represents the iteration count and the cooling function is denoted as ( ) *r rg T T  . 

(6) Termination Criterion 

The algorithm terminates when the number of iterations reaches a predefined maximum or when no 

significant improvement in the non-dominated solution set (Pareto front) is observed for g consecutive generations, 

indicating convergence. 

 

V. CASE STUDY ANALYSIS 

 

5.1 Data Description 
Suppose there are five transportation enterprises, each having its own vehicle yard. These five enterprises form a 

transportation alliance. Coordinates for vehicle yards, the empty container depot, the loaded container depot, and customer 

points were randomly generated using numerical experiments. After multiple trials, data with suitable outcomes were selected 

for validation experiments. The positions are shown in Fig. 5. 
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Fig. 5. Coordinate Location Diagram 

 

All transportation enterprises use standardized container models for cargo loading, specifically 40-foot 

containers. A total of 70 transportation tasks are distributed among the five depots, which collaboratively complete 

all assigned tasks. A subset of the transportation tasks is shown in Table 2, with the full list provided in the 

appendix. 

Table 2 Transportation Task Information 
Task No. Task Type Task Point Trailers stored Destination Service Time Window 

1 1 Point 13 1 Point 25 [17:05,17:25] 

2 2 Point 17 2 Empty depot [10:33,10:53] 
3 2 Point 19 3 Point 23 [14:23,15:13] 

4 1 Point 28 1 Loaded depot [17:49,18:09] 

5 2 Point 25 2 Point 30 [18:10,18:30] 
… … … … … … 

67 2 Point 41 1 Point 50 [11:33,12:03] 

68 2 Point 4 2 Empty depot [18:57,19:47] 

69 1 Point 15 1 Point 29 [14:25,14:45] 

70 2 Point 39 2 Empty depot [11:16,11:56] 

 

In order to facilitate the study, the settings of each parameter are shown in Table 3. 

 

Table 3 Numerical description 
Numerical description Parameter value 

The daily working time window of the tractor [8:00，22:00] 

The annual fixed cost of a tractor 170,000 CNY 
Daily fixed cost 472 CNY per vehicle per day 

Price of domestic No. 0 diesel 7.14 CNY per liter 

Fuel consumption per 100 km when the tractor runs alone 20 liters 
Fuel consumption per 100 km when the tractor tows an empty trailer 26 liters 

Fuel consumption per 100 km when the tractor tows an empty container with trailer 37 liters 

Fuel consumption per 100 km when the tractor tows a loaded container with trailer 45 liters 
Penalty cost for violating the time window constraint 700 CNY per hour 

Revenue per unit distance when the tractor tows a loaded container with trailer 0.5 CNY per ton per kilometer 

Revenue per unit distance when the tractor tows an empty container with trailer 5 CNY per kilometer 
Revenue per unit distance when the tractor calls and tows an empty trailer 2.8 CNY per kilometer 

Revenue obtained from dispatching one empty container 380 CNY per unit 

Population size 80 
Maximum number of iterations 500 

Crossover probability 0.9 

Mutation probability 0.1 
Initial temperature of simulated annealing 100 

Cooling rate 0.95 

Maximum iterations of the outer loop 500 
Maximum iterations of the inner loop 200 

 

5.2 Results and Comparative Analysis 

This study employs an improved multi-objective genetic algorithm. To ensure the validity of the 

experimental results without considering other external factors, the proposed model is executed 10 times. Among 

these 10 simulation runs, the two optimal scenarios—one with the maximum total alliance revenue and the other 

with the highest customer satisfaction—are selected for comparative analysis. 

(1) The scheduling scheme based on maximizing alliance total revenue is presented in Table 4. 
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Table 4 Alliance Revenue-Maximized Scheduling Scheme 
ID Routing Path CO₂  Cost Total Revenue Total Cost Actual Profit 

1 D-15-U-10-38-1-E-38-D 104.70 3676.24 1926.19 1750.05 

2 B-2-9-49-E-28-U-C 109.06 4233.76 2148.37 2085.39 

3 D-38-E-10-24-26-31-C 108.86 4226.08 2146.68 2079.4 
4 C-29-41-42-44-42-1-F 90.63 4318.16 1866.36 2451.8 

5 D-44-E-39-E-22-U-C 96.21 4034.80 2250.66 1784.14 

6 B-40-E-30-E-F 93.47 3628.48 1908.37 1720.11 
7 A-23-28-21-26-5-E-F 116.35 4516.64 2257.49 2259.15 

8 F-4-U-8-36-A 106.57 4136.88 2108.56 2028.32 

9 C-18-24-27-32-37-E-F 106.10 4118.96 2102.25 2016.71 
10 C-45-U-1-10-4-E-F 102.98 3997.52 2054.05 1943.47 

11 D-38-U-27-E-11-E-F 115.52 2931.84 1633.14 1298.70 
12 B-16-E-16-22-44-U-C 106.78 4145.20 2110.68 2034.52 

13 F-47-50-13-25-A 106.69 4141.84 2110.54 2031.30 

14 D-15-29-47-U-13-34-A 90.79 3524.40 1868.79 1655.61 
15 A-34-E-25-30-31-E-F 107.74 4582.56 2124.64 2457.92 

16 F-39-46-1-U-C 83.29 3233.28 1752.86 1480.42 

17 F-E-35-B 47.46 4646.64 2308.01 2338.63 
18 A-50-E-48-B 94.87 4207.52 2094.99 2112.53 

19 A-17-E-7-E-12-D 112.90 3683.04 1930.22 1752.82 

20 A-25-U-E-43-C 105.81 4382.72 2206.69 2176.03 
21 B-32-9-43-U-C 94.51 3668.88 1924.26 1744.62 

22 F-E-21-41-50-A 108.46 4210.32 2138.36 2071.96 

23 D-6-8-40-U-C 101.34 3934.08 2029.94 1904.14 
24 B-33-37-36-E-42-F 103.58 4020.88 2060.76 1960.12 

25 F-24-U-E-20-F 116.85 4536.08 2264.33 2271.75 

26 C-7-U-19-23-A 119.70 3003.28 1659.82 1343.46 
27 F-E-11-3-E-F 77.36 3842.48 1920.01 1922.47 

 

Based on the scheduling plan with maximum alliance revenue, the total tractor mileage is 17047.82 

kilometers, actual total revenue obtained is 52675.54 yuan, average customer satisfaction reaches 74.53%, and 

total carbon emission costs are 2728.58 yuan. The alliance used 27 tractors in total: yard 1 dispatched 5 tractors, 

yard 2 dispatched 5 tractors, yard 3 dispatched 4 tractors, yard 4 dispatched 6 tractors, and yard 5 dispatched 7 

tractors. Most tractors did not return to their original yards after completing tasks. It is evident from the tractor 

paths that yards 3, 4, and 5, located near the empty and loaded container depots, effectively minimized empty 

travel distances and times. 

(2) The customer satisfaction-maximized scheduling scheme is presented in Table 5. 

 

Table 5 Customer Satisfaction-Optimized Scheduling Scheme. 
ID Routing Path CO₂  Cost Total Revenue Total Cost Actual Profit 

1 A-23-28-19-23-A 95.42 3525.52 2013.29 1512.23 

2 F-29-41-44-U-31-E-C 119.65 4425.60 2344.27 2081.33 

3 A-34-E-12-26-31-C 122.50 4531.68 2381.70 2149.98 
4 D-39-E-10-24-F 76.80 2833.44 1755.37 1078.07 

5 A-2-9-27-32-15-29-F 115.52 4272.40 2286.97 1985.43 

6 D-39-46-6-8-13-34-A 106.92 3952.88 2171.37 1781.51 
7 F-18-24-1-10-47-U-D 96.84 3578.32 2032.50 1545.82 

8 F-10-38-32-9-11-E-C 98.07 3623.92 2049.37 1574.55 

9 C-7-U-E-38-42-1-A 106.27 3928.64 2162.14 1766.5 

10 D-38-E-20-13-25-A 105.73 3908.4 2151.91 1756.49 

11 D-38-U-27-E-F 78.75 2934.32 1843.22 1091.1 

12 F-49-E-7-E-25-30-A 121.79 4505.36 2370.94 2134.42 
13 F-44-E-25-U-D 89.08 3290.00 1922.20 1367.80 

14 A-50-E-11-D 82.31 3038.40 1832.38 1206.02 

15 B-22-E-3-E-C 72.01 2784.08 1650.79 1133.29 
16 C-45-U-E-35-B 91.62 3384.32 1957.19 1427.13 

17 D-E-21-41-50-22-U-D 122.94 4548.00 2386.73 2161.27 

18 B-40-E-37-E-C 76.66 3056.80 1914.59 1142.21 
19 A-15-U-42-44-E-42-D 102.67 3794.96 2110.34 1684.62 

20 B-4-U-4-E-C 95.68 3535.2 2015.57 1519.63 
21 C-21-26-8-36-1-U-C 100.86 3727.44 2088.14 1639.3 

22 F-47-50-33-E-D 95.80 3539.44 2017.83 1521.61 

23 D-E-43-E-48-B 95.88 3542.48 2018.59 1523.89 
24 B-16-E-16-22-B 95.30 3520.96 2007.66 1513.30 

25 B-33-37-43-U-C 79.14 2920.56 1788.49 1132.07 

26 F-1-E-40-U-D 74.28 2739.84 1722.55 1017.29 
27 D-12-E-17-E-C 86.76 3203.68 1891.99 1311.69 

28 C-5-E-28-U-D 77.13 3074.32 1824.02 1250.30 

29 F-24-U-36-E-F 82.35 3226.20 1732.41 1493.79 
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Under the scenario prioritizing maximum customer satisfaction, total mileage increases to 18149.94 

kilometers, total revenue obtained decreases to 44502.64 yuan, average customer satisfaction increases to 88.53%, 

and carbon emission costs increase slightly to 2764.73 yuan. The alliance used 29 tractors, distributed as follows: 

yards 1 and 2 dispatched 5 tractors each, yard 3 dispatched 4 tractors, yard 4 dispatched 7 tractors, and yard 5 

dispatched 8 tractors. 

(3) The comparative analysis of the two optimal dispatching schemes reveals the following 

characteristics: ① In the 10 experimental runs, when the total alliance revenue is maximized, the level of customer 

satisfaction is lower than that in the scenario with the highest customer satisfaction. Conversely, when customer 

satisfaction is maximized, the total revenue of the alliance is not optimal. This demonstrates that alliance revenue 

and customer satisfaction cannot be optimized simultaneously, which is consistent with the nature of multi-

objective genetic algorithms. ② The comparison between the optimal schemes under maximum alliance revenue 

and highest customer satisfaction indicates that, although the total cost increases slightly when customer 

satisfaction is considered, the average customer satisfaction improves by 18.7%. This suggests that the proposed 

model can provide valuable support for enterprise decision-makers, enabling them to make more appropriate 

choices based on the current state of enterprise management. 

 

VI. CONCLUSION 

Through systematic modeling and solution analysis of the drop-and-hook vehicle scheduling problem 

under time window constraints, this study arrives at the following main conclusions: First, under the context of 

multi-enterprise alliance operations, incorporating dual optimization objectives of customer satisfaction and 

alliance profit helps to balance economic efficiency and service quality, providing a more scientific basis for 

collaborative scheduling decisions among enterprises. Second, by reasonably accounting for practical factors such 

as trailer storage, tractor working hours, time window penalties, and carbon emission costs, the model more 

accurately reflects the complexity and dynamic nature of drop-and-hook transportation scheduling, thereby 

enhancing its applicability and practical value. Third, the integrated optimization algorithm, which combines a 

multi-objective genetic algorithm with simulated annealing and variable neighborhood search, significantly 

improves computational efficiency and solution diversity, demonstrating strong stability and flexibility in large-

scale task allocation and vehicle routing problems. Lastly, experimental comparisons between strategies focused 

on maximizing alliance profit and those focused on maximizing customer satisfaction reveal that the former helps 

reduce costs and resource input, while the latter enhances service value by improving customer satisfaction. This 

indicates that the proposed model can support alliance enterprises in flexibly formulating scheduling strategies 

based on their operational objectives.  

Despite the contributions of this study, there remains room for further exploration. Future research may 

focus on the following areas: (1) incorporating dynamic demand variations, real-time traffic conditions, and 

unexpected events into the scheduling process; (2) investigating fair profit-sharing mechanisms within alliances 

in greater depth; and (3) exploring scheduling optimization in more complex network structures under multimodal 

transportation environments to better align with real-world transportation demands. 
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APPENDIX 

 

Appendix Table 1 Transportation Task Information 
Task 

No. 

Task 

Type 

Task 

Point 

Trailers 

stored 
Destination 

Service Time 

Window 

Task 

No. 

Task 

Type 

Task 

Point 

Trailers 

stored 
Destination 

Service Time 

Window 

1 1 
Point 

13 
1 Point 25 [17:05,17:25] 36 1 

Point 

38 
2 

Loaded 

depot 
[08:18,08:38] 

2 2 
Point 

17 
2 

Empty 

depot 
[10:33,10:53] 37 1 

Point 

42 
1 Point 44 [16:45,17:15] 

3 2 
Point 

19 
3 Point 23 [14:23,15:13] 38 2 

Point 
49 

0 
Empty 

depot 
[09:08,09:48] 

4 1 
Point 

28 
1 

Loaded 

depot 
[17:49,18:09] 39 2 

Empty 

depot 
0 Point 38 [13:29,13:59] 

5 2 
Point 

25 
2 Point 30 [18:10,18:30] 40 1 

Point 

44 
0 

Loaded 

depot 
[18:11,18:51] 

6 2 
Point 

34 
0 

Empty 

depot 
[11:36,12:16] 41 1 

客户点
10 

1 Point 24 [13:44,14:34] 

7 1 
Point 

23 
1 Point 28 [09:53,10:13] 42 2 Point 1 2 

Empty 

depot 
[11:18,12:18] 

8 2 
Point 

30 
2 

Empty 

depot 
[11:48,12:48] 43 2 

Empty 

depot 
0 Point 42 [18:27,19:17] 

9 2 
Point 

13 
0 Point 34 [18:32,18:52] 44 1 

Point 

24 
2 

Loaded 

depot 
[09:30,10:00] 

10 1 
Point 

25 
2 

Loaded 

depot 
[11:58,12:38] 45 1 

Point 

42 
0 Point 1 [18:19,18:59] 

11 1 Point 2 1 Point 9 [08:09,08:29] 46 2 
Point 

44 
3 

Empty 

depot 
[09:15,09:45] 

12 2 
Point 

16 
2 

Empty 

depot 
[13:02,13:22] 47 2 

Empty 

depot 
0 Point 11 [13:24,13:44] 

13 1 
Point 

22 
3 

Loaded 

depot 
[13:59,14:29] 48 2 

Point 

38 
2 

Empty 

depot 
[10:46,11:06] 

14 2 
Point 

27 
1 Point 32 [12:15,12:45] 49 2 

Point 

10 
1 Point 38 [09:52,10:12] 

15 2 
Point 

40 
1 

Empty 

depot 
[08:23,08:43] 50 1 Point 1 0 

Loaded 

depot 
[19:37,20:07] 

16 2 
Empty 

depot 
0 Point 20 [12:03,12:53] 51 2 Point 3 1 

Empty 

depot 
[16:27,17:17] 

17 2 
Point 

22 
1 

Empty 
depot 

[08:02,09:02] 52 1 Point 4 2 
Loaded 

depot 
[11:28,12:08] 

18 1 
Point 

32 
2 Point 9 [12:58,13:18] 53 1 Point 6 1 Point 8 [10:51,11:11] 

19 1 
Point 

40 
1 

Loaded 

depot 
[18:08,18:38] 54 2 

Point 

12 
0 

Empty 

depot 
[08:58,09:38] 

20 2 
Point 

16 
1 Point 22 [16:53,17:33] 55 2 

Empty 

depot 
0 Point 35 [17:33,18:33] 

21 2 
Point 

27 
2 

Empty 

depot 
[13:32,14:32] 56 1 

Point 

39 
2 Point 46 [08:07,08:47] 

22 2 
Empty 
depot 

0 Point 48 [19:39,19:59] 57 1 
Point 

47 
0 Point 50 [09:58,10:58] 

23 2 Point 5 1 
Empty 

depot 
[13:20,14:20] 58 2 

Point 

36 
1 

Empty 

depot 
[14:20,15:10] 

24 2 Point 7 0 
Empty 
depot 

[13:00,13:20] 59 2 
Empty 

depot 
0 Point 43 [17:35,17:55] 

25 1 
Point 

21 
2 Point 26 [11:50,12:10] 60 1 

Point 
15 

1 
Loaded 

depot 
[08:35,09:25] 

26 2 
Point 

31 
1 

Empty 
depot 

[19:03,19:33] 61 1 
Point 

29 
1 Point 41 [14:22,15:12] 

27 2 
Point 

33 
0 Point 37 [13:04,13:24] 62 2 

Point 

50 
0 

Empty 

depot 
[08:21,09:21] 

28 1 
Point 

45 
2 

Loaded 

depot 
[08:40,09:00] 63 2 

Empty 

depot 
0 Point 12 [16:52,17:12] 

29 1 
Point 

26 
0 Point 31 [18:29,18:49] 64 1 

Point 
47 

2 
Loaded 

depot 
[15:40,16:10] 

30 2 
Point 

37 
1 

Empty 

depot 
[16:28,17:28] 65 1 Point 8 0 Point 36 [17:28,18:18] 

31 2 Empty 0 Point 21 [09:21,09:51] 66 1 Point 1 Loaded [16:51,17:51] 
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depot 43 depot 

32 1 Point 7 2 
Loaded 

depot 
[09:07,09:57] 67 2 

Point 
41 

1 Point 50 [11:33,12:03] 

33 1 Point 1 1 Point 10 [12:15,13:05] 68 2 Point 4 2 
Empty 

depot 
[18:57,19:47] 

34 2 
Point 

11 
0 

Empty 

depot 
[18:31,19:31] 69 1 

Point 

15 
1 Point 29 [14:25,14:45] 

35 2 
Point 

18 
3 Point 24 [09:54,10:14] 70 2 

Point 
39 

2 
Empty 
depot 

[11:16,11:56] 

 


