
International Refereed Journal of Engineering and Science (IRJES) 

ISSN (Online) 2319-183X, (Print) 2319-1821 

Volume 14, Issue 1 (Jan.-Feb. 2025), PP. 50-63 

 

www.irjes.com                                                                                                                                            50 | Page 

The Mathematical Model on the Effect of Saturated Term 

on the Seir Epidemical Model 
 

Njida James Andest, Joshua A. Kwanamu and Charles Vandi 
Department of Mathematics, Adamawa State University, Mubi-Nigeria 

 

Abstract 
This study presents an enhanced SEITR (Susceptible-Exposed-Infectious-Treatment-Recovered) model that 

builds upon traditional epidemiological frameworks to address complex disease transmission patterns, 

particularly for infections with significant incubation periods and treatment dynamics. Unlike classic models 

such as the SIR model, the SEITR model introduces additional compartments to represent the Exposed (E) and 

Treatment (T) stages, enabling a more comprehensive representation of disease progression. By incorporating 

saturated incidence rates, the model accounts for behavioral responses and healthcare capacity constraints, 

providing a realistic depiction of disease spread and intervention effects.Through rigorous mathematical 

analysis, we confirm the existence, uniqueness, positivity, and boundedness of the model's solutions, ensuring 

both mathematical and biological feasibility. We also determine the basic reproduction number and examine the 

local stability of the disease-free equilibrium, providing insights into the conditions necessary for disease 

eradication. Numerical simulations further illustrate the impact of saturation terms and treatment effects on the 

dynamics of each compartment, offering visual insights into the model's applicability to real-world epidemic 

scenarios. The SEITR model's ability to simulate various intervention strategies and predict outcomes under 

limited healthcare resources makes it a valuable tool for public health planning and epidemic control, 

emphasizing the importance of timely intervention and resource allocation. This study highlights the model’s 

potential to inform effective decision-making for managing infectious diseases. 

Keywords: SEITR model, Disease transmission, Saturated incidence rate, Epidemic modeling, Basic 

reproduction number, Stability analysis. 
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I. Introduction 

The SEITR (Susceptible-Exposed-Infectious-Treatment-Recovered) model builds upon traditional 

epidemiological frameworks to provide a more nuanced representation of disease transmission and intervention 

dynamics, particularly for diseases with complex incubation periods and significant treatment effects (Shokri, 

2015). Classical models, such as the SIR model introduced by Kermack and McKendrick in 1927, are 

foundational for understanding epidemic patterns but lack the ability to capture incubation periods and the 

impact of treatments. The SEITR model addresses these limitations by introducing "Exposed" and "Treatment" 

compartments, which enhance its ability to model disease latency and intervention impacts on transmission 

(Ndanusa and Tafida, 2016). This refined structure enables a more accurate depiction of disease dynamics, 

making it particularly useful for diseases like COVID-19 and influenza where incubation and timely treatment 

play a critical role (Kamoh et al., 2019). 

The SEITR model's flexibility makes it a powerful tool for public health decision-making. It aids in 

designing effective intervention strategies, such as quarantine and vaccination, by providing a detailed view of 

disease progression and intervention efficacy (Anggriani and Beay, 2022; Banan et al., 2022). The model's 

incorporation of saturation effects, both in transmission and treatment, helps address real-world constraints in 

resource allocation and capacity. This approach reflects the importance of timely intervention and scalable 

treatment in managing outbreaks (Kayode and Adegboro, 2018). Mathematical modeling continues to be 

essential in epidemic response, offering insights that guide disease management strategies and resource 

allocation. The SEITR model, by improving on traditional models with saturation and treatment adjustments, 

demonstrates significant advancements in disease modeling and control (Hilker et al., 2017; Nyerere et al., 

2014). 

By applying a system of ordinary differential equations (ODEs), the SEITR model tracks the rates of 

transition between these compartments, offering a comprehensive picture of how diseases spread and respond to 

interventions. This approach allows public health authorities to analyze intervention strategies—such as 

quarantine, vaccination, and treatment protocols effectively, thus enhancing resource allocation and outbreak 

response (Kayode and Adegboro, 2018). In addition, the model’s incorporation of nonlinear transmission 
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dynamics, such as those resulting from crowding or behavior changes, makes it adaptable to real-world 

scenarios where disease spread is not strictly linear (Kolokolnikov and Iron, 2021). Analytical techniques like 

the Homotopy Perturbation Method (HPM) and Laplace Adomian Decomposition Method (LADM) further 

refine SEITR-based analyses by providing insights into parameter sensitivity and improving prediction accuracy 

in dynamic environments, which is essential for managing disease-induced mortality and outbreak control 

(Kolawole and Adeniyi, 2020, Kolawole et al., 2023). 

The SEIR model constructed by Al-Sheikh, (2012) investigated the impact of saturation terms on an 

SEIR epidemic model, delineating the population into four distinct epidemiological categories: susceptible (S), 

exposed (E), infectious (I), and recovered (R). 

 

II. The Model Formulation 

This study intends to propose a mathematical model incorporating saturated terms into the SEIR 

epidemic model to enhance the efficiency and capacity of treatment in controlling the spread of disease. We 

refer to the modified model SEITR categorizing the population into susceptible (S), exposed (E), infectious (I), 

Treatment (T) and recovered (R) groups.  

 

2.1 Variables and Parameters of the Model 

Table 2.1: Variables of the modified Model 
Variables Definition  

S(t) The number of individuals susceptible to the disease at time t. 

E(t) The number of individuals exposed to the disease (infected but not yet infectious) at time t. 

I(t)  The number of individuals infectious (and capable of spreading the disease) at time t. 
R(t) The number of individuals who have recovered from the disease and are assumed to have acquired immunity 

at time t. 

T(t) The number of individuals receiving treatment for the disease at time t. 

 

Table 2.2: Parameters of the Model 
Parameters Definition  

0s  
Initial susceptible population 

0e  
Initial exposed population 

0i  
Initial infected population 

0r  
Initial recovered population 

0t  
Initial treated population 

A  Recruitment rate 

  Treatment time (The rate at which individuals in the infectious compartment move to the 

treatment) 

  
The transmission rate or contact rate, representing the rate at which susceptible 

  Rate of losing immunity  

  
Natural death rate   

1  
Disease induced death for the infected individual 

2  
Disease induced death for the treated compartment 

  Treatment rate 

  The rate at which individuals in the treatment compartment recover and move to the recovered 
compartment. 

  The rate at which individuals in the recovered compartment lose immunity and become 
susceptible again, if immunity is temporary. 

1 and 
2  

Saturation term 

 

2.2 Assumptions for the Model 

The following assumptions help to simplify the mathematical formulation of the SEITR model and make it 

tractable for analysis and simulation.  

i. That the recruitment rate is constant. 

ii. The population is homogeneously mixed. 

iii. The parameters of the compartment are constant. 

iv. The individuals in each compartment are randomly mixed. 

v. The time spent in each compartment follows an exponential distribution. 

vi. The deaths of new individuals are negligible compared to the total population size.  
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vii. The susceptible population is constant over the short term. 

viii. The individuals who recover from the infection gain permanent immunity and cannot be infected again. 

ix. The treatment individuals who are infected and receiving treatment not recovered. 

x. Individuals can move between compartments. 

xi. The initial conditions for each compartment is used to start the simulation. 

 

2.3 Description of the Model 

The total population  tN  is divided in five compartments depending on the epidemiological status of the 

individual in the population. The compartments are susceptible individual  tS , exposed individual  tE , 

infected individual  tI , treated individual  tT , recovered individual  tR . 

Susceptible individual loss at the 
IS

SI

211 




 for exposed class and by natural death at the rate of S  also, 

increase A  and those who recovered R . 

Thus, SR
IS

SI
A

dt

dS










211
. 

Exposed individual loses at the rate E  for infectious class and by the natural death at the rate also increase by 

IS

SI

211 




 

Thus  E
IS

SI

dt

dE










211
. 

Infectious individual loses at the I  for the treatment class by natural death at the ratio  I2   also increase 

by E  

Thus  IE
dt

dI
2  . 

Treatment individual loses at the T  for recovery class by natural death at the  I2   and also increase by 

I  

Thus  TI
dt

dT
2   

Recovered individual loses at the R  for susceptible class by natural death at the R  also increase by T . 

Thus  RT
dt

dR
   
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2.4 Schematic Diagram of the Modified Model 
 

 
Figure 2.1:  Schematic Diagram of Modified Model 

 

2.5 Model Equation 

The modified model equation is derived from the assumptions and flow diagram depicted in Figure 3.2, and it is 

expressed as equation (3.1). 
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 
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dt
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dt
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


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
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21

21

1
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        (2.1) 

 

III. Model Analysis 

In this section, we will analyzed the basic properties of the modified model. These properties are equilibrium 

point of the model (Disease free and endemic equilibrium), Basic reproductive number by next generation 

matrix, local stability of disease free equilibrium point etc. 

 

3.1 Disease Free Equilibrium (DEF) of the Model 

The disease-free equilibrium (DFE) of the SEITR (Susceptible-Exposed-Infectious-Treatment-Recovered) 

model represents a state where there are no infectious individuals in the population, and the disease is not 

actively spreading,mathematically.  

Theorem 3.1 

According to Andest et al., (2023), a disease-free equilibrium state of the model (2.1) exist at the point. When 

there exist no disease or any intervention. 

Thus, the Disease-Free Equilibrium (DFE) point for the SEITR model is: 

  







 0,0,0,0,,,,,,



A
RTIES         (3.1) 

Referring to theorem 3.1, the disease-free equilibrium (DFE) point of SEITR model was proved as follows: 

Proof 
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The disease free equilibrium are steady state points are steady state solutions of that depict the absence of the 

disease in the population. This implies that at the SEITR free equilibrium point by setting the right hand side of 

equation (2.1) to zero. i.e. 0
dt

dR

dt

dT

dt

dI

dt

dE

dt

dS
. 

To find the disease-free equilibrium (DFE) of the SEITR model given by the system of differential equations, 

we set the infectious components E, I, and T to zero and solve for the remaining variables S and R. using the 

system (2.1) for the disease-free equilibrium, we set 0,0,0  TIE (Andest et al., 2023). 

The equations simplify as follows: 

0 SRA
dt

dS
           

In the absence of the disease and intervention, we have  

SA

SA







 0
 

Solving for S  



A
S               

Thus, the disease-free equilibrium (DFE) point for this SEITR model is: 

  







 0,0,0,0,,,,,,



A
RTIES . 

3.2 Existence and Uniqueness 

For the purpose of showing the uniqueness of model solution, the following representations were made: 

Let                    tRtytTtytItytEtytSty  54321 ,,,, , so that the model equation given by 

equation (2.1) can be re-written in a complex form as  

            5005400430032002100154321 ,,,,,,,,,, ytyytyytyytyytyyyyyytf
dt

dy
  (3.2) 

Theorem 3.1 

Suppose that the function  54321 ,,,,, yyyyytf  in the model equation given by system (3.2) satisfies Lipchitz 

condition in the region   byyttytD  000:,  for some Dbaba  ,,0,0 , then, there exist a 

natural constant number 01  , such that a unique continuous vector solution  ty  of the model equation 

given by equation (3.1) exists in the interval 10  tt . 

Lemma 3.1: if  ytf ,  has continuous partial derivative 

i

i

y

f



  for ni ,,2,1   on a bounded convex domain

R , then it satisfies a Lipchitz condition in R     ,3,2,1,,, 11   iyykytfytf nnn
 

According to Lemma 3.1, for the functions given by the equation (2.1) to satisfy Lipchitz condition.  

Proof 

From the model equation given by system (2.2) let  

 
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




RT
dt

dR
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TI
dt

dT
ytf

IE
dt

dI
ytf

E
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SI

dt

dE
ytf
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IS

SI
A

dt

dS
ytf

















55

244

233

21
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11

,

,

,

1
,

1
,

     (3.3) 

To show that 5,,3,2,1,, 



ji

y

f

j

i  are continuous and bounded in the region D. We consider the partial 

derivatives of equation (3.3) are: 
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  SR
IS

SI
Aytf

dt

dS










21

11
1

,  





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


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























R

f

T

fS

I

f

E

fI

S

f 11

2

11

1

1 ,0,,0,     (3.4) 

Also, taking the partial derivatives of the second component of equation (3.3) we obtained 

   E
IS

SI
ytf

dt

dE





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
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1

,  

    

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


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







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


0,0,,, 22

2
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2

2
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T

fS

I

f

E

f
k

I

S

f








    (3.5)  

Consider the partial derivatives of the third component of equation (3.3) we get 

   IEytf
dt

dI
233 ,    
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The partial derivatives of the fourth component of equation (3.3) are as follows 

   TIytf
dt
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244 ,    
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The partial derivatives of the fifth component of equation (3.3), we obtained 

   RTytf
dt

dR
  55 ,  

  
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
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
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f

S

f
     (3.8) 

It can be observed from equations (3.4) to (3.8) that all the partial derivatives of the model equation are 

continues and bounded in the interval,  D0 by the lemma 3.1. The functions given in by equation (2.1) 

satisfy Lipchitz condition and hence, there exists a unique solution of model equation (2.1) in the region D. 

 

3.3 Positivity of Solution   

Theorem 3.3 

For a nonnegative initial conditions, the model equation given in equation (2.1) the solution will remain positive 

for all time  RTIES ,,,,  of the equation are non-negative for all time 0t  

Proof: 

For the model equations (2.1), let t  be the maximum time for the epidemics. This implies that 

  0,0,0,0,0:0sup  RTIEStt  that is 0t . From the first equation of (2.1), we have 

dt
S
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S
S

SI
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S
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IS

SI
A

dt
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








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







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1

1

211

   

dtSLn             (3.9)

  

Taking the exponential of both side (3.9) 

 

    000 







t

t

eSS

etS





 

Since 0 . 

From the second equation of (2.1) we have 
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 E
IS

SI

dt

dE










211
  

 E            

 (3.10) 

Integrating both side (4.10) 
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
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Since   0 t . 

Similarly, from the third equation of (2.1) we have 

 IE
dt

dI
2   
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 (3.11) 

Integrating both side (3.11) 
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Since   02  t . 

From the fourth equation of (2.1) we have 

 TI
dt

dT
2   
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Integrating both side (3.12) 
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Since   02  t . 

And from the fifth equation of (2.1) we have 

 RT
dt

dR
   

 R           

 (3.13) 

Integrating both side (3.13) 

  

  







dtR

dt
R

dR





ln

 

    

      
000 



 

 

dt

t

eRR

etR




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Since   0 . 

Theorem 3.3 establishes that for nonnegative initial conditions, the solution of the model equation given in 

equation (2.1) will remain positive for all time. The proof begins by considering the maximum time for the 

epidemic, denoted as t  and analyzing each equation within the system.  

 

3.4 Feasible Region (Invariant Region) 

The invariant region in which the solution model equations given by system (2.1) will be bounded and make 

biological sense can be established in the following theorem: 

Theorem 3.4 

The solution of the model given by equation (2.1) is bounded in the closed set  

 








 


A
RTIES 5,,,,         (3.14) 

Furthermore, the set   is positively invariant and attracting with respect to model equation given by system 

(2.1). 

Proof 

To find the feasible region (also known as the invariant region) for the SEITR model, we need to identify the 

region in which the total population remains bounded and positive over time. 

The total population at any time t can be represented as: 

           tRtTtItEtStN         

 (3.15) 

Differentiating equation (3.15) with respect to time t we have 

dt

dR

dt

dT

dt

dI

dt

dE

dt

dS

dt

dN
         

 (3.16) 

We sum all these equations to get the equation for the total population  tN  using (3.16) we have 

   

   RTTI

IEE
IS

SI
SR

IS

SI
A

dt

dR

dt

dT

dt

dI

dt

dE

dt

dS

dt

dN

























2

2

2121 11

   

 (3.17) 

Simplifying (3.17), terms involving  ,,  and  cancel out, leaving us with: 

 RTIESAETIESA
dt

dN
    

NA            

 (3.18) 

This is a linear differential equation in N : 

AN
dt

dN
           

 (3.19) 

To solve for equation (3.19), we use the integrating factor method. The integrating factor is
te

 

ttt AeNe
dt

dN
e             

 (3.20) 

Integrating both sides with respect to t: 

    dtAedteN
dt

d tt   

Ce
A

eN tt  


          

 (3.21) 

Where C  is the constant of integration. Solving for N : 
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tCe
A

N 


           

 (3.22) 

As t , the exponential term 
tCe
approaches 0, leaving: 

 


A
tN  . 

Thus, the total population  tN is bounded by 


A
. This implies that the feasible region, or the invariant region, 

for the system is: 



A
RTIESN 0 . 

Therefore, the invariant region for the SEITR model is: 

 








 


A
RTIESRTIES 5,,,, . 

This region ensures that the total population remains non-negative and bounded above by 


A , guaranteeing the 

feasibility and sustainability of the population dynamics modeled by the SEITR equations. 

 

3.5 Basic Reproduction Number  0R  

The basic reproduction number is defined as the average number of the secondary cases infections generated by 

a typical infected person in an otherwise disease free population. The basic reproduction number  0R  of the 

system (2.1) is computed the next generation matrix method. Here the next generation matrix iF  denotes the 

rate of appearance of new infections and iV  represents the transfer of infection into and out of any compartment 

respectively.  

To find the basic reproduction number,  0R , for the SEITR model, we use the next-generation matrix approach. 

This involves identifying the new infections and the transitions between compartments. 

Using the SEITR model equations (2.1), we first focus on the infected compartments: E , I  and T .  
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     

     

     


















 
























































































00

00

00

1

2

030303

020202

010101

0

2

21















T

xf

I

xf

E

xf
T

xf

I

xf

E

xf
T

xf

I

xf

E

xf

x

xf

I

E

IS

SI

F

j

i

i

 

 

 

 

 

     

     

     

 
 

  













































































































00

00

00

2

2

030303

020202

010101

0

2

2













K

T

xv

I

xv

E

xv
T

xv

I

xv

E

xv
T

xv

I

xv

E

xv

x

xv
V

E

I

EK

V

j

i
i

 

The next-generation matrix F  (new infection terms) and V  (transition terms) are: 



The Mathematical Model on The Effect Of Saturated Term On The Seir Epidemical Model 

www.irjes.com                                                                                                                                            59 | Page 
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where 


A
S   and 0E  

We linearize the system around the disease-free equilibrium (DFE),  
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To find 
0R , we compute the eigenvalues of the matrix 1VF : 
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The characteristics polynomial is given by  
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Simplifying the characteristics polynomial we obtain 

The eigenvalues of the characteristics polynomial are as follows: 

A

kA
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Where 
kA 22

2  
 

The largest or dominant eigenvalues is 2z
 therefore, the basic reproduction number 0R

  

A

kA
R
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


. 

Thus, the basic reproduction number 0R
 for the SEITR model is: 
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2

2

0




 
From here it is clear that the reproduction number with treatment is greater than that without treatment. 

Therefore, treatment plays a vital role in control of disease. 
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3.6 Local Stability of the DFE(𝐱𝟎) 
Theorem: 3.5 

The disease free equilibrium point of the model system (2.1) is 

i. Locally asymptotically stable if 10 R  

ii. Unstable if 10 R  

If and only if Jacobian  0xJ  has a negative trace and positive determinant (Andest et al. 2023). 

Proof 

Here we take the partial differentiation of (2.1) with respect to S, E, I, T, R at the disease-free equilibrium which 

gives us:  

Thus, we compute the Jacobian matrix J of the system at the DFE. The Jacobian matrix J is the matrix of first-

order partial derivatives of the right-hand side of the system with respect to the variables in equation (2.1). 
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where 
54321 ,,,, fffff  are the right-hand sides of the differential equations (2.1). 

Evaluating the partial derivatives at the DFE   
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Evaluating at the DFE   

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The Jacobian matrix at the DFE is: 
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3.8 Numerical Simulation  

In this section, we give perform/illustration numerical experiment/simulation of our basic model using 

(MATLAB R2018a). 

 

Table 3.1: Description of variables with their values 
Variables Value Reference  

S(t) 25 Kolawole et al. (2023) 

E(t) 18 Kolawole et al. (2023) 

I(t)  12 Kolawole et al. (2023) 

R(t) 7 Kolawole et al. (2023) 
T(t) 20 Biswwas et al. (2014) 

 

Table 3.2: Description parameters with their values 
Parameters Value Reference  

0s  
0.25 Kolawole et al. (2023) 

0e  
0.5 Biswwas et al. (2014) 

0i  
0.08 Kolawole et al. (2023) 

0r  
0.15 Kolawole et al. (2023) 

0t  
0.1 Kolawole et al. (2023) 

A  48 Kolawole et al. (2023) 

  0.05 Jinhong et. al. (2014) 

  
0.3 Kolawole et al. (2023) 

  1.25 Jinhong et. al. (2014) 

  
0.5 Kolawole et al. (2023) 

1  
0.2 Jinhong et. al. (2014) 

2  
0.4 Kolawole et al. (2023) 

  0.8 Jinhong et. al. (2014) 

  0.001 Biswwas et al. (2014) 

  0.5 Kolawole et al. (2023) 

1 and 
2  2,110  nn  

Kolawole et al. (2023) 
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Figure 3.1: Effect of Saturation term on 

Susceptible class  

 

 
Figure 3.2: Effect of Saturation term on Infected 

class  

IV. Discussion of Results 

This study analyzes the SEITR model's core features, focusing on the existence and uniqueness of the 

solution, positivity, and local stability of the disease-free equilibrium. We first demonstrate that the model meets 

the conditions for a unique solution by reformulating the SEITR equations and applying the Lipschitz condition, 

ensuring a continuous and well-defined solution. This approach guarantees the solution’s feasibility within a 

specific interval, affirming the model's theoretical soundness. Ensuring positivity is equally essential since it 

represents human populations, and we confirm that the model's solutions remain non-negative under 

nonnegative initial conditions, maintaining biological validity. 

We establish the invariant or feasible region by analyzing total population dynamics through the SEITR 

equations. Summing these equations allows us to derive a bounded region, constrained by the population's birth 

and death rates, ensuring the population remains biologically meaningful over time. This feasible region acts as 

a natural limit for the model, ensuring realistic population changes within each compartment. Additionally, we 

identify the disease-free equilibrium (DFE), representing a condition where no individuals are infected. The 

DFE is critical as it outlines the state where the disease is eradicated, providing a baseline for studying stability. 

The model's basic reproduction number, a pivotal threshold metric, quantifies the average number of 

secondary infections from a single infected individual in a fully susceptible population. We calculate this using 

the next-generation matrix method, which helps determine the potential for disease spread and guides control 

measures. The local stability of the DFE is analyzed by examining the eigenvalues of the Jacobian matrix at the 

DFE. If all eigenvalues have negative real parts, the DFE is stable, meaning minor disturbances will decay over 

time, keeping the disease under control. However, if any eigenvalue is positive, the DFE becomes unstable, 

indicating the disease could invade the population. 

The numerical simulations of the basic model was carried out. The simulations demonstrate the impact 

of various parameters on the population dynamics. Figures 4.1 and 4.2, show the effect of the saturation terms 

on the susceptible, exposed, and infected classes, respectively. These visualizations help in understanding how 

different factors influence the spread and control of the disease, providing insights into potential intervention 

strategies. 

The numerical simulations provide a comprehensive understanding of the SEITR model's behavior and 

validate our analytical findings. They offer a visual and quantitative representation of the model dynamics, 

making the theoretical results more tangible and applicable to real-world scenarios. Through these simulations, 

we can explore various scenarios and assess the effectiveness of different public health interventions in 

controlling the spread of the disease. 

 

V. Summary and Conclusion 
This study presents a modified SEIR model that incorporates saturated incidence rates to more 

accurately depict infectious disease transmission dynamics, building on Al-Sheikh's (2012) work by adding a 

treatment compartment to account for interactions between infected and recovered individuals. Through 

rigorous mathematical analysis, the study confirms the existence, uniqueness, positivity and boundedness of the 

model's solutions, ensuring both mathematical and biological validity. Key findings include the identification of 
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the disease-free equilibrium point and the calculation of the basic reproduction number, which provide crucial 

insights into disease eradication conditions. The local stability analysis shows that when the basic reproduction 

number is less than one, the disease-free equilibrium is stable, meaning the disease will die out over time. This 

model emphasizes the importance of saturation effects in enhancing predictive accuracy and informing effective 

disease control strategies. 
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