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ABSTRACT In this paper, we analyze a mathematical model of tuberculosis (TB) epidemics for stability with 

respect to the basic reproduction number Ro. The basic reproduction number Ro is determined. We give criteria 

for stability of the disease – free equilibrium (DFE) and the endemic equilibrium 
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I Introduction 
Infection with mycobacterium tuberculosis leads to tuberculosis (TB) disease which causes more adult 

deaths than any other infections diseases [1]. Primary progression after a recent infection, re-activation of a 

latent infection and exogenous re-infection of previously infected individual are three possible routes of 

tuberculosis infection [2]. The global burden of tuberculosis (TB) has increased over the past two decades 

despite widespread implementation of control measures including BCG vaccination and the World Health 

Organization‟s  DOTS strategy which focuses on case finding and short-course chemotherapy [3,4,5,6,7,8]. This 

is due to the emergence of drug-resistant TB strains and the convergence of human immunodeficiency virus 

(HIV) and TB epidemics [4, 10]. The rise in TB incidence has led to a growing consensus among public health 

policy makers that new strategies will be needed to achieve TB control especially in sub-Saharan Africa, Asia 

and Eastern Europe where the disease is predominant [4,5,11]. Proposed approaches include active case finding, 

isoniazid preventative therapy (IPT), anti-retroviral therapy among HIV-infected and improved detection and 

treatment of patients with multidrug-resistant TB [2,3,8,9 10,11,12,13,14]. Over the years, researchers have 

formulated and developed a large number of mathematical models in order to gain insights into the transmission 

dynamics of TB epidemics (see [1,2,3,4,7,15,16,17,18,19,20,21,22, 23]) and the references therein. In this paper 

we are interested in the model of Blower et al. [3]. We analyze the dynamics of this model by a threshold 

quantity called the basic reproduction number (denoted by Ro) which measures the number of new TB cases an 

infected individual will generate in a completely susceptible population. We formulate theorems on stability of 

disease-free equilibrium point and endemic equilibrium point and establish the proof of the theorems. 

 

II Mathematical Formulation and Stability Analysis 
We consider the model presented by Blower et al. [3]. 
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We present in table 1 below the detailed descriptions of the parameters of the model. 

 

Table 1: Description of variables and parameters for the model 

Variables  Description  

S Susceptible individuals 

L Latently infected individuals  

I Infections individuals 
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Parameters Description Range  Reference  

  Recruitment rate of susceptible individuals   0.60,080 [3,7] 

  Natural death rate 0.01425 [7] 

T  Death rate   due to TB infection 0.0042, 0.0068 [3,7] 

v  Rate of slow progression 0004, 0.570 [3,7] 
  Rate of fast progression  0.004, 0.0088 [3,7] 

  Transmission rate of active TB 0.0238,0.0856  [3,7] 

   

2.1 The basic reproduction number Ro 
  Using the formulation of Ro presented by Diekmann and Heesterbeek [24], the basic reproduction 

number for model (1) is  

    Ro = 
 






     (2) 

 

2.2 The Critical (Equilibrium) Points 

 The critical points of model (1) is 
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    where OP  is the disease – free equilibrium point and 
*P  is endemic equilibrium. 

 

2.3 Stability Theorems 

 We shall need the theorems below in order to determine the nature of the critical points 

 

Theorem 1 [25,26] 

Let 
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, where P(x,y) and Q(x,y) have continuous first partial derivatives in a neighbourhood 

of X1 

(a) If the eigenvalues of A = )( 1

1 Xg  have  negative real part then X1 is an asymptotically stable critical 

point  

(b)  If A = )( 1

1 Xg  has an eigenvalue with positive real part, then X1 is an unstable critical point. 

 

Theorem 2 [27] (DESCARTES’ RULE OF SIGNS) 

 The number of positive zeros (negative zeros) of polynomials with real coefficients is either equal to 

the number of change in sign of the polynomial or less than this by an even number (by counting down by 

two‟s). 

 

Theorem 3 

 The critical point of the disease-free equilibrium is asymptotically stable if Ro < 1 and if 

0,0,0  Tv       

Proof 

Linearizing our system (1) about the DFE, the Jacobian matrix of the DFE at OP is   
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The eigenvalues are given by  

     0)()(  Tv      (4) 

Hence,    Tv   321 ,,  

If 10,0,0  oT Rv  in equation (4), then there are no change in signs which implies that there are 

no positive solutions of equation (4). If  is replaced by  in equation (4), then there are 3 sign changes so 

that equation (4) has exactly 3 negative roots. This implies that all the eigenvalues 321 ,,  are negative. 

Hence, the disease-free equilibrium point OP  is asymptotically table. 

Remark 

 Using the data [3,7], Ro = 0.5716 <1. It shows that the disease-free equilibrium OP  is asymptotically 

stable. 

Theorem 4 

 The critical point 
*P   of the endemic equilibrium is unstable if Ro >1 and 

0,0,0,0,0,0  Tv   

Proof 

 The Jacobian matrix of equation (1) at 
*P  is  
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The characteristics equation of (5) is  
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Expanding and manipulating the algebra, we have  
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If we let 1,0,0,0,0,0,0  oT Randvv  in equation (7), it follows then that there is 

only 1 sign change which implies that there is exactly I positive root. If   is replaced by - is equation (7) and 

by the conditions of Theorem 4, equation (7) yields 2 sign changes and there are exactly 2 negative roots or zero 

root. Hence, there is exactly 1 positive root and 2 negative roots of equation (7). It follows that the endemic 

equilibrium point 
*P  is unstable. 

 

Remark 

 By using the model parameter values in Table 1, Ro = 1.1894 >1. Hence, the critical point of the 

endemic equilibrium is unstable. 
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III Conclusion 
 From the stability analysis results, we have shown that the disease-free equilibrium point is 

asymptotically stable while the endemic equilibrium point is unstable. In addition, the basic reproduction 

number Ro is determined and shown as a threshold value of the disease dynamics. In particular, it is shown that 

the disease-free equilibrium is asymptotically stable if Ro<1 while the endemic equilibrium is unstable if Ro>1. 
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